Covert Quantum Internet
Abstract
We apply covert quantum communication based on entanglement generated from the Minkowski vacuum to the setting of quantum computation and quantum networks. Our approach hides the generation and distribution of entanglement in quantum networks by taking advantage of relativistic quantum effects. We devise a suite of covert quantum teleportation protocols that utilize the shared entanglement, local operations, and covert classical communication to transfer or process quantum information in stealth. As an application of our covert suite, we construct two prominent examples of measurementbased quantum computation, namely the teleportationbased quantum computer and the oneway quantum computer. In the latter case we explore the covert generation of graph states, and subsequently outline a protocol for the covert implementation of universal blind quantum computation.
I Introduction
The Internet is ubiquitous in daily life, linking a multitude of devices; but the security of the Internet is a public concern. For the exchange of sensitive information a different type of network, called the Darknet, provides anonymous connections that are strongly resistant to eavesdropping and traffic analysis Syverson et al (). Recently, the structure and resilience of the Internet and the Darknet were analyzed, and the latter was shown to be a more robust network under various types of failures Domenico and Arenas (). Covert protocols for classical communication lee2015achieving (); sobers2016covert (); mukherjee2016covert () and computation von Ahn et al (); Chandran et al (); Jarecki () supply networks with a concealing medium or object, enabling data to be transferred or processed without detection. Quantum information science provides a new perspective on the networking of devices, as well as the possible types of algorithms and protocols. In the setting of the quantum internet the network nodes generate, process, and store quantum information locally, and entanglement is distributed across the entire network Cirac et al 1 (); H. Jeff Kimble (); Rod Van Meter (). As part of the paradigm of local operations and classical communication (LOCC), quantum teleportation protocols utilize the shared entanglement to faithfully transfer quantum data from site to site or implement quantum logic gates for distributed quantum computation Cirac et al 2 (); Pirandola et al (); Pirandola and Braunstein (); Van Meter and Devitt ().
In certain situations, such as a secret government mission, quantum networks might need their communications or computations to be performed without detection. Here, we solve this problem by extending recent work on covert quantum communication Absolutely Covert () to the setting of quantum computation and quantum networks. We devise a suite of covert quantum teleportation protocols taking advantage of relativistic quantum effects. We show, for instance, that quantum teleportation protocols can be performed in stealth by utilizing the entanglement present in Minkowski vacuum and covert classical communication to hide the nonlocal parts in quantum teleportation.
In our setup we hide the generation and sharing of entanglement, without a concealing medium or object, between network nodes through the relativistic modes of the Minkowski vacuum, and covert entanglement persists at long distance. We introduce a Minkowski vacuumassisted amplification scheme in Section II, followed by standard entanglement distillation with covert classical communication to recover covert Bell states. The entanglementswapping protocol with covert classical communication distributes entanglement across the network, which provides a resource for our suite of covert quantum teleportation protocols. This enables quantum data to be transferred or processed in the quantum network without detection. Thereby, the quantum network’s operations remain hidden from any adversary outside of the network. We call this the Covert Quantum Internet.
We apply our suite of covert quantum teleportation protocols to construct two prominent examples of measurementbased quantum computation Jozsa (); Briegel et al (): the teleportationbased quantum computer Gottesman and Chuang (); Zhou et al (); Eisert et al (); Nielsen (); Leung (); Childs et al () and the oneway quantum computer Raussendorf and Briegel 1 (); Raussendorf and Briegel 2 (); Raussendorf et al (). Teleportationbased quantum computers use the idea of gate teleportation to carry out computations. We give covert versions of gate teleportation protocols, such as the onebit teleportation primitive Zhou et al () and the multipartite compressed teleportation (MCT) protocol MCT (), in Section III. We discuss universal quantum computation with covert gate teleportation in Section IV.1. A oneway quantum computer carries out computations solely by performing singlequbit measurements on a fixed, manybody resource state and the measurement bases determine the gate or algorithm that is implemented. We show how to covertly generate graph states, such as the topological D cluster state Raussendorf and Harrington (); Raussendorf Harrington Goyal () or the recently discovered Union Jack state with nontrivial D symmetry protected topological order (SPTO) Miller and Miyake (), in Section IV.2. The singlequbit measurements on the covert resource state are performed locally during implementation of a quantum algorithm, and the feedforward of measurement outcomes is shared through covert classical communication. In addition we outline a covert implementation of the Broadbent, Fitzsimons, and Kashefi (BFK) protocol for universal blind quantum computation BFK () in Section IV.2. Finally, we conclude in Section V.
Ii Covert communication
Long before the development of cryptography and encryption, one of humankindâs best techniques of secretly delivering a message was to hide the fact that a message was even delivered at all. Methods for covert quantum communication with a concealing medium, i.e., thermal noise, were considered in Bash et al (); Arrazola and Scarani (), but the conclusion was that stealth capabilities vanish when the medium is absent. In Absolutely Covert () truly ultimate limits on covert quantum communication were presented. In this section we describe the covert generation and sharing of entanglement between Alice and Bob, or network nodes in a quantum network, without a concealing medium or object using plain twostate inertial detectors bibRez (). The goal is to generate entanglement from the vacuum. We describe a process which results in entangled detectors. However, the amount of entanglement is very small. We amplify it by repeating the process, thus accumulating a finite amount of entanglement from the vacuum. The fidelity of the resulting state shared by the detectors possessed by Alice and Bob is then increased close to perfection by standard distillation techniques. The previous work of some of the authors, Absolutely Covert (), differs from the current analysis in the type of the detectors used. In both cases the detectors are inertial, but in Absolutely Covert () we used a pair of two twolevel atoms with a timedependent energy gap. This, however, poses a considerable challenge for the current quantum technology stateoftheart. Here, the detectors are standard twolevel atoms.
Alice and Bob are in possession of twostate detectors. The detectors couple to vacuum modes which we model by a real massless scalar field . They are separated by a distance . For definiteness, let for Alice, and for Bob. If Alice’s (Bob’s) detector is turned on at time (), then the proper time between the two detectors while in operation is
(1) 
We expect maximal correlations between the two detectors along the null line connecting the two events, i.e., , or . Thus, if Alice’s detector is turned on at , then optimally, Bob’s detector will be turned on at time .
The twopoint correlator for the massless scalar field is given by
(2) 
For best results at finite , for the detectors we choose window functions centered around points at which diverges (i.e., Alice and Bob are along a null line). Thus, for Alice and Bob, we choose, respectively,
(3) 
where is a coupling constant whose value depends on the details of the detector setup. In general, it is expected to be small. is the width of the time window during which the detector is turned on.
Assuming localized detectors, the Hamiltonian is
(4) 
where is the energy gap of the two states of a detector, and () are spin ladder operators for Alice’s (Bob’s) detector.
The massless scalar field can be expanded in terms of creation and annihilation operators as
(5) 
where annihilates the vacuum (). The Hilbert space of the system is the tensor product of excitations of the vacuum state , and the twodimensional spaces of Alice and Bob spanned by , .
Assuming an initial state , the evolution of the system is governed by the Hamiltonian . After tracing out the field degrees of freedom, it is easy to see that the final state is of the form
(6) 
Thus the evolution of the system of the two detectors after they are switched on and off with the switching profile (3) is given by the quantum channel . The final state is in general entangled. However the amount of entanglement is minute. To enhance the entanglement, after the detectors have been switched off and therefore decoupled from the scalar field, we bring the state of back to the vacuum, and repeat the process. This can be repeated times, where is large enough for appreciable entanglement generation. At the th step, we apply the channel
(7) 
At each step, the state is of the same form as (6),
(8) 
with , and .
Using perturbation theory, we obtain
(9) 
Explicitly, at first order in we have
(10) 
These expressions contain poles. Using the Fourier transform of the detector profile,
(11) 
and contour integration, we arrive at expressions which are free of singularities and amenable to numerical integration^{1}^{1}1The expressions can be evaluated analytically as well.:
(12) 
After applications of the quantum channel, we bring the system of the two detectors to the state
(13) 
Thus, after steps, the effective coupling constant becomes , and entanglement is amplified. To quantify the results, we use the singlet fraction of defined as horodeckisReview ()
(14) 
We have optimized the singlet fraction using perturbation theory numerically to second order in . We have shown above explicit analytic expressions at first order in . We have also obtained secondorder analytical expressions, but not included here for brevity. Their derivation is based on the expansion of two twolevel detectors to an arbitrary perturbative order in bradlerExpansion (). Using these secondorder analytical expressions, we have calculated the singlet fraction (14) numerically. Its behavior is shown in Fig. 1 and 2. For a wide range of parameters of the system, we obtain , showing entanglement extraction from the vacuum. More precisely, there are known twoqubit entangled states where , but in our case the entanglement of formation (EOF) horodeckisReview () is zero whenever , and positive otherwise. The iteratively collected entanglement through the Minkowski vacuumassisted amplification scheme is shown in figure Fig. 2. As the number of iterations increases, the original minute amount of entanglement reaches quite substantial values. When measured as the singlet fraction, it goes well above and a corresponding increase is documented for the EOF as well. Recall that the EOF is a true entanglement measure for two qubits. As in the case of Fig. 1, the actual calculation is done to the second order in . After the amplification process is completed, we perform standard distillation on many copies of the iterated state in order to arrive at a nearly perfect maximally entangled state. Thus, we produce a covert Bell state shared between Alice’s and Bob’s detectors.
Iii Covert Quantum Teleportation
The quantum teleportation protocol was introduced by Bennett et al. Bennett et al (). Recently, the protocol was found to have a D topological structure using the quon language Quon (); and Pirandola and Braunstein cite teleportation as the “most promising mechanism for a future quantum internet” Pirandola and Braunstein (). To implement the protocol for two parties: a sender, Alice, disassembles an unknown quantum state at her location; and a receiver, Bob, reconstructs the quantum state identically at his location. In order for the reconstruction to succeed, Alice and Bob prearrange to share the Bell state, which is utilized as a resource for the protocol. In addition, the parties share some purely classical information.
The idea of covertly implementing the quantum teleportation protocol involves hiding the nonlocal parts, i.e., distribution of the entangled resource state and classical communication of measurement outcomes. In II we presented the covert generation and distribution of the Bell state, shared by Alice and Bob. Covert classical communication hides the transfer of the measurement outcomes from Alice to Bob. Thus, we establish a protocol for the hidden transfer of quantum data between Alice and Bob, or network nodes.
Gottesman and Chuang considered a variant of the teleportation protocol in which Bob’s reconstructed quantum state differed from Alice’s original quantum state Gottesman and Chuang (). In this elegant version of teleportation the faulttolerant construction of certain quantum gates was developed. Later, Zhou et al. extended the teleportation method of gate construction by introducing the onebit teleportation primitive, which enabled a class of gates in the Clifford hierarchy to be recursively constructed Zhou et al (). As an example, this includes the controlled rotations that appear in Shor’s factoring algorithm Shor (). Zhou et al. and Eisert et al. first considered the minimal resources required for the implementation of certain remote quantum gates Zhou et al (); Eisert et al (). A generalization of these methods, called the multipartite compressed teleportation (MCT) protocol, enables the efficient sharing of multipartite, nonlocal quantum gates in which the protocol does not reduce to compositions of bipartite teleportation MCT (). Furthermore, the MCT protocol allows a quantum network to share a controlled gate with multiple targets.
The scheme for the covert teleportation of quantum states is adaptable to the variants of the protocol that teleport quantum gates. For instance, the covert teleportation of a controlledNOT gate utilizes one covert Bell state, local operations, and covert classical communication of measurement outcomes. The covert recursive construction with one bit teleportation Zhou et al () utilizes instances of the covert, controlledNOT gate, local operations, and covert classical communication of the ancillary state preparation and measurement outcomes. In the MCT protocol the resource state is either the GreenbergerHorneZeilinger state , or as first introduced in Max (), depending upon the particular nonlocal quantum gate MCT (). Both multipartite resource states can be constructed from simpler Bell states Bose et al (); Max (), thus covert Bell states can be distilled into covert or with local operations and covert classical communication.
Iv Covert MeasurementBased Quantum Computation
iv.1 TeleportationBased Quantum Computation
The teleportationbased approach to quantum computation uses the idea of gate teleportation to affect quantum computation Gottesman and Chuang (); Zhou et al (); Eisert et al (); Nielsen (); Leung (); Childs et al (); MCT (). Given the ability to perform singlequbit gates, the teleportation of either a controlledNOT gate or a controlledZ gate is universal for quantum computation. Hence, a covert implementation of a universal teleportationbased quantum computer is achieved with covert Bell states, local operations that include all singlequbit gates, and covert classical communication of measurement outcomes. Alternative universal quantum gate sets can be constructed through the covert MCT protocol or the covert recursive construction with the onebit teleportation primitive.
iv.2 OneWay Quantum Computation
Another prominent example of measurementbased quantum computation is the oneway quantum computer , which was introduced by Raussendorf and Briegel Raussendorf and Briegel 1 (); Raussendorf and Briegel 2 (). The idea of is to prepare a fixed, manybody resource state in which quantum computations are carried out solely through singlequbit measurements on the resource state and classical feedforward of measurement outcomes Jozsa (); Briegel et al (). Cluster states, a subclass of graph states, are the archetypal resource state, whereby topological D cluster states are utilized in faulttolerant versions of Raussendorf and Harrington (); Raussendorf Harrington Goyal (). Universal resource states for have been widely studied Briegel et al (); Raussendorf and Harrington (); Raussendorf Harrington Goyal (); BFK (); Van den Nest et al (), and recently the universal Union Jack state with nontrivial D symmetry protected topological order (SPTO) was found Miller and Miyake ().
A oneway quantum computation proceeds with a classical input that specifies the data and program. A graph state is generated by preparing each vertex qubit in a graph in the fiducial starting state , and applying a controlledZ gate to every pair of qubits connected by an edge in the graph. Since controlledZ gates mutually commute, the production of a graph state is independent of the order of operations. Next, a sequence of adaptive singlequbit measurements is implemented on certain qubits in the graph, whereby the measurement bases depend upon the specified program as well as the previous measurement outcomes. A classical computer determines which measurement directions are chosen during every step of the computation.
To covertly implement the classical input that specifies the data and program needs to be shared by covert classical communication. The graph state is generated by applying the covert, controlledZ gate to each pair of fiducial qubits connected by an edge in the graph. The singlequbit measurements are applied locally. The classical computer that determines the measurement directions is offline, and covert protocols for communication lee2015achieving (); sobers2016covert (); mukherjee2016covert () and computation von Ahn et al (); Chandran et al (); Jarecki () are utilized.
Topological D cluster states provide a pathway towards largescale distributed quantum computation Van Meter and Devitt () by combining the universality of D cluster states with the topological errorcorrecting capabilities of the toric code Kitaev (). Quantum computation is performed on a D cluster state via a temporal sequence of singlequbit measurements, which leaves a nontrivial cluster topology that embeds a faulttolerant quantum circuit Raussendorf and Harrington (); Raussendorf Harrington Goyal (). To generate the computational resource state fiducial qubits are located at the center of faces and edges of an elementary cell; see Figure 2, page of Raussendorf Harrington Goyal (). ControlledZ gates are applied from each face qubit to each neighboring edge qubit. The elementary cell is tiled in D to form a topological cluster state. Hence, the covert generation of the topological D cluster state follows from the discussion above.
The universal D cluster state was shown to have trivial D symmetry protected topological order (SPTO) and nontrivial D SPTO, whereas the universal Union Jack state was found to possess nontrivial D SPTO Miller and Miyake (). The Union Jack state is generated by preparing fiducial qubits, and applying a controlledcontrolledZ gate to every triangular cell in the graph. The resulting universal resource state has the advantageous property of being Pauli universal, meaning that singlequbit measurements in the Pauli bases on the Union Jack state can implement arbitrary quantum computations. The feature of Pauli universality is forbidden for the D cluster state, as implied by the GottesmanKnill theorem, since the state is generated by an element from the Clifford group Gottesman Knill (). In other words singlequbit measurements in the Pauli bases on the D cluster state are efficiently simulated on a classical computer. The covert generation of the Union Jack state is a simple modification of the aforementioned scheme with controlledZ gates for graph states. Namely, covert teleportation applies a doubly controlledZ gate to fiducial qubits in triangular cells.
BFK introduced a universal blind quantum computation protocol BFK (), which exploits measurementbased quantum computation to allow a client, Alice, with limited quantum computing power to delegate a computation to a quantum server, Bob. The premise of the BFK protocol is that Alice’s inputs, computations, and outputs are unknown to Bob BFK (); Chien et al (). In what follows we outline a covert implementation of the basic steps in the BFK protocol, by hiding the communication rounds between Alice and Bob.

The preparation stage
For each column
For each row
Alice prepares qubits such that
and transfers each qubit to Bob via covert teleportation.

Bob generates an entangled brickwork state BFK () from all the qubits received, applying a controlledZ gate to qubits joined by an edge.


Interaction and measurement stage
For each column
For each row
Alice computes based on the real measurement angle and the previous measurement results.

Alice chooses and computes the angle

Alice sends to Bob via covert classical communication.

Bob measures in the basis then sends the measurement outcome to Alice via covert classical communication.

If above, then Alice flips the measurement outcome bit; otherwise she does nothing.

V Conclusion
A quantum internet is a manifest platform for quantum cryptography, sensor networks, and largescale networked quantum computing. We developed a quantum internet that hides its operations by exploiting features of relativistic quantum information. In particular, we used properties of the Minkowski vacuum to hide the generation and distribution of entanglement in quantum networks, which provides a resource for covert quantum teleportation, thus enabling the faithful transmission of quantum data from site to site without detection, as well as the construction of universal quantum computers that carry out quantum logic operations in stealth. We anticipate further protocols being constructed covertly. For instance, graph states can be generated covertly, which could be used in the study of preexisting protocols and algorithms that require graph states. We are working on the experimental details of our setup towards a proofofprinciple demonstration in the near future.
Acknowledgements.
This material is based upon work supported by the U.S. Air Force Office of Scientific Research under award number FA95501710083. The authors also acknowledge support from the U.S. Office of Naval Research (ONR) under award number N000141512646.References
 (1) Paul Syverson, David Goldschlag, and Michael Reed, Anonymous connections and onion routing, IEEE Symposium on Security and Privacy (1997). \doi10.1109/SECPRI.1997.601314
 (2) Manilo De Domenico and Alex Arenas, Modeling structure and resilience of the dark network, Phy. Rev. E 95, 022313 (2017). \doi10.1103/PhysRevE.95.022313
 (3) Seonwoo Lee, Robert Baxley, Mary Ann Weitnauer, and Brett Walkenhorst, Achieving undetectable communication, IEEE Journal of Selected Topics in Signal Processing vol. 9 no. 7, 1195–1205 (2015). \doi10.1109/JSTSP.2015.2421477
 (4) Tamara Sobers, Boulat Bash, Saikat Guha, Don Towsley, and Dennis Goeckel, Covert communication in the pressence of an uninformed jammer, (2016). https://arxiv.org/abs/1605.00127
 (5) Pritam Murkherjee and Sennur Ulukus, Covert bits through queues, IEEE Conference on Communications and Network Security, (2016). \doi10.1109/CNS.2016.7860561
 (6) Luis von Ahn, Nicholas Hopper, and John Langford, Covert twoparty computation, In STOC ’05 Proceedings of the 37th annual ACM symposium on Theory of computing, 513–522, New York, NY, USA, 2005, ACM Press.
 (7) Nishanth Chandran, Vipul Goyal, Rafail Ostrovsky, and Amit Sahai, Covert multiparty computation, IEEE Symposium on Foundations of Computer Science, (2007). \doi10.1109/FOCS.2007.61
 (8) Stanislaw Jarecki, Practical covert authentication, PublicKey CryptographyPKC 2014, Lecture notes in Computer Science, vol. 8383, (2014). \doi10.1007/9783642546310_35
 (9) Ignacio Cirac, Peter Zoller, H. Jeff Kimble, and Hideo Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett. 78, 3221 (1997). \doi10.1103/PhysRevLett.78.3221
 (10) H. Jeff Kimble, The quantum internet, Nature 453, 1023–1030 (2008). \doi10.1038/nature07127
 (11) Rod Van Meter, Quantum networking, John Wiley & Sons, 2014. \doi10.1002/9781118648919
 (12) Ignacio Cirac, Artur Ekert, Susana Huelga, and Chiara Macchiavello, Distributed quantum computation over noisy channels, Phys. Rev. A 59, 4249 (1999). \doi10.1103/PhysRevA.59.4249
 (13) Stefano Pirandola, Jens Eisert, Christian Weedbrook, Akira Furusawa, and Samuel Braunstein, Advances in quantum teleportation, Nature Photonics 9, 641–652 (2015). \doi10.1038/nphoton.2015.154
 (14) Stefano Pirandola and Samuel Braunstein, Physics: unite to build a quantum internet, Nature 532, 169–171 (2016). \doi10.1038/532169a
 (15) Rodney Van Meter and Simon Devitt, The path to scalable distributed quantum computing, Computer vol. 49, 31–42 (2016). \doi10.1109/MC.2016.291
 (16) Kamil Brádler, Timjan Kalajdzievski, George Siopsis, and Christian Weedbrook, Absolutely covert quantum communication, (2016). https://arxiv.org/abs/1607.05916
 (17) Richard Jozsa, An introduction to measurement based quantum computation, (2005). https://arxiv.org/abs/quantph/0508124
 (18) Hans Briegel, Daniel Browne, Wolfgang Dür, Robert Raussendorf and Maarten Van den Nest, Measurementbased quantum computation, Nature Physics, 19–26, (2009). \doi10.1038/nphys1157
 (19) Daniel Gottesman and Isaac Chuang, Demonstrating the viability of universal quantum computation using teleportation and singlequbit operations, Nature 402, 390–393 (1999). \doi10.1038/46503
 (20) Xinlan Zhou, Debbie Leung, and Isaac Chuang, Methodology for quantum logic gate construction, Phys. Rev. A 62, 052316 (2000). \doi10.1103/PhysRevA.62.052316
 (21) Jens Eisert, Kurt Jacobs, Polykarpos Papadopoulos, and Martin Plenio, Optimal local implementation of nonlocal quantum gates, Phys. Rev. A 62, 052317 (2000). \doi10.1103/PhysRevA.62.052317
 (22) Michael Nielsen, Quantum computation by measurement and quantum memory, Physics Letters A Vol. 308, Issues 2–3, 96–100, (2003). \doi10.1016/S03759601(02)018030
 (23) Debbie Leung, Quantum computation by measurements, IJQI Vol. 308, No. 1, 33–43, (2004). \doi10.1142/S0219749904000055
 (24) Andrew Childs, Debbie Leung, and Michael Nielsen, Unified derivations of measurementbased schemes for quantum computation, Phys. Rev. A 71, 032318 (2005). \doi10.1103/PhysRevA.71.032318
 (25) Robert Raussendorf and Hans Briegel, A oneway quantum computer, Phys. Rev. Lett. 86, 5188 (2001). \doi10.1103/PhysRevLett.86.5188
 (26) Robert Raussendorf and Hans Briegel, Computational model underlying the oneway quantum computer, Quantum information & Computation 2, 443–486 (2002).
 (27) Robert Raussendorf, Daniel Browne, and Hans Briegel, Measurementbased quantum computation on cluster states, Phys. Rev. A 68, 022312 (2003). \doi10.1103/PhysRevA.68.022312
 (28) Arthur Jaffe, Zhengwei Liu, and Alex Wozniakowski, Constructive simulation and topological design of protocols, New J. Phys. (2017). \doi10.1088/13672630/aa5b57
 (29) Robert Raussendorf and Jim Harrington, Faulttolerant quantum computation with high threshold in two dimensions, Phys. Rev. Lett. 98, 190504 (2007). \doi10.1103/10.1103/PhysRevLett.98.190504
 (30) Robert Raussendorf, Jim Harrington, and Kovid Goyal, Topological faulttolerance in cluster state quantum computation, New J. Phys. 9 (2007). \doi10.1088/13672630/9/6/199
 (31) Jacob Miller and Akimasa Miyake, Hierarchy of universal entanglement in 2D measurementbased quantum computation, npj Quantum Information 2, 16036 (2016). \doi10.1038/npjqi.2016.36
 (32) Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi, Universal blind quantum computation, Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, 517–526 (2009). \doi10.1109/FOCS.2009.36
 (33) Boulat Bash, Andrei Gheorghe, Monika Patel, Jonathan Habif, Dennis Goeckel, Don Towsley, and Saikat Guha, Quantumsecure covert communication on bosonic channels, Nature Communications 6, 8626 (2015). \doi10.1038/ncomms9626
 (34) Juan Arrazola and Valerio Scarani, Covert quantum communication, Phys. Rev. Lett. 117, 250503 (2016). \doi10.1103/PhysRevLett.117.250503
 (35) Benni Reznik, Entanglement from the vacuum, Foundations of Physics 33, 167 (2003). \doi10.1023/A:1022875910744
 (36) Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki, Quantum entanglement, Review of Modern Physics vol. 81, 865, (2009). \doi10.1103/RevModPhys.81.865
 (37) Kamil Brádler, A novel approach to perturbative calculations for a large class of interacting boson theories, (2017). https://arxiv.org/abs/1703.02153
 (38) Charles Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William Wootters, Teleporting an unknown quantum state via dual classical and EinsteinPodolskyRosen channels, Phys. Rev. Lett. 70, 1895 (1993). \doi10.1103/PhysRevLett.70.1895
 (39) Zhengwei Liu, Alex Wozniakowski, and Arthur Jaffe, Quon 3D language for quantum information, Proceedings of the U.S. National Academy of Sciences vol. 114 no. 10, 2497–2502, (2017). \doi10.1073/pnas.1621345114
 (40) Peter Shor, Polynomialtime algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. vol. 26, issue 5, 1484–1509, (1997). \doi10.1137/S0097539795293172
 (41) Arthur Jaffe, Zhengwei Liu, and Alex Wozniakowski, Holographic software for quantum networks, (2016). https://arxiv.org/abs/1605.00127
 (42) Sougato Bose, Vlatko Vedral, and Peter Knight, A multiparticle generalization of entanglement swapping, Phys. Rev. A 57, 822 (1998). \doi10.1103/PhysRevA.57.822
 (43) Maarten Van den Nest, Akimasa Miyake, Wolfgang Dür, and Hans Briegel, Universal resources for measurementbased quantum computation, Phys. Rev. Lett 97, 150504 (2006). \doi10.1103/PhysRevLett.97.150504
 (44) Alexei Kitaev, Faulttolerant quantum computations by anyons, Annals of Physics vol. 303, issue 1, 2–30, (2003). \doi10.1016/S00034916(02)000180
 (45) Daniel Gottesman, The Heisenberg representation of quantum computers, https://arxiv.org/abs/quantph/9807006, Group 22: Proceedings of the XXII International Colloqium on Group Theoretical Methods in Physics, 32–43 (1998).
 (46) ChiaHung Chien, Rodney Van Meter, and SyYen Kuo, Faulttolerant operations for universal blind quantum computation, ACM j. Emerg. Technol. Comput. Syst. Article, 22 pages (2013). \doi10.1145/0000001.0000001