Constructing Optimal Authentication Codeswith Perfect Multi-fold Secrecy

Constructing Optimal Authentication Codes
with Perfect Multi-fold Secrecy

Michael Huber University of Tuebingen
Wilhelm Schickard Institute for Computer Science
Sand 13, D-72076 Tuebingen, Germany
Email: michael.huber@uni-tuebingen.de
Abstract

We establish a construction of optimal authentication codes achieving perfect multi-fold secrecy by means of combinatorial designs. This continues the author’s work (ISIT 2009, cf. [1]) and answers an open question posed therein. As an application, we present the first infinite class of optimal codes that provide two-fold security against spoofing attacks and at the same time perfect two-fold secrecy.

I Introduction

Authentication and secrecy are two crucial concepts in cryptography and information security. Although independent in their nature, various scenarios require that both aspects hold simultaneously. For information-theoretic or unconditional security (i.e. robustness against an attacker that has unlimited computational resources), authentication and secrecy codes have been investigated for quite some time. The initial construction of authentication codes goes back to Gilbert, MacWilliams & Sloane [2]. A more general and systematic theory of authentication was developed by Simmons (e.g., [3, 4]). Fundamental work on secrecy codes started with Shannon [5].

This paper deals with the construction of optimal authentication codes with perfect multi-fold secrecy. It continues the author’s recent work [1], which naturally extended results by Stinson [6] on authentication codes with perfect secrecy. We will answer an important question left open in [1] that addresses the construction of authentication codes with perfect multi-fold secrecy for equiprobable source probability distributions. We establish a construction of optimal authentication codes which are multi-fold secure against spoofing attacks and simultaneously provide perfect multi-fold secrecy. This can be achieved by means of combinatorial designs. As an application, we present the first infinite class of optimal codes that achieve two-fold security against spoofing as well as perfect two-fold secrecy.

The paper is organized as follows: Necessary definitions and concepts from the theory of authentication and secrecy codes as well as from combinatorial design theory will be summarized in Section II. Section III gives relevant combinatorial constructions of optimal authentication codes which bear no secrecy assumptions. In Section IV, we review Stinson’s constructions in [6] and recent results from [1]. Section V is devoted to our new constructions.

Ii Preliminaries

Ii-a Authentication and Secrecy Codes

We rely on the information-theoretical or unconditional secrecy model developed by Shannon [5], and by Simmons (e.g., [3, 4]) including authentication. Our notion complies, for the most part, with that of [6, 7]. In this model of authentication and secrecy three participants are involved: a transmitter, a receiver, and an opponent. The transmitter wants to communicate information to the receiver via a public communications channel. The receiver in return would like to be confident that any received information actually came from the transmitter and not from some opponent (integrity of information). The transmitter and the receiver are assumed to trust each other. Sometimes this is also called an -code.

In what follows, let denote a set of source states (or plaintexts), a set of messages (or ciphertexts), and a set of encoding rules (or keys). Using an encoding rule , the transmitter encrypts a source state to obtain the message to be sent over the channel. The encoding rule is an injective function from to , and is communicated to the receiver via a secure channel prior to any messages being sent. For a given encoding rule , let denote the set of valid messages. For an encoding rule and a set of distinct messages, we define , i.e., the set of source states that will be encoded under encoding rule by a message in . A received message will be accepted by the receiver as being authentic if and only if . When this is fulfilled, the receiver decrypts the message by applying the decoding rule , where

An authentication code can be represented algebraically by a -encoding matrix with the rows indexed by the encoding rules, the columns indexed by the source states, and the entries defined by (, ).

We address the scenario of a spoofing attack of order (cf. [7]): Suppose that an opponent observes distinct messages, which are sent through the public channel using the same encoding rule. The opponent then inserts a new message (being distinct from the messages already sent), hoping to have it accepted by the receiver as authentic. The cases and are called impersonation game and substitution game, respectively. These cases have been studied in detail in recent years (e.g., [8, 9]), however less is known for the cases . In this article, we focus on those cases where .

For any , we assume that there is some probability distribution on the set of -subsets of source states, so that any set of source states has a non-zero probability of occurring. For simplification, we ignore the order in which the source states occur, and assume that no source state occurs more than once. Given this probability distribution on , the receiver and transmitter choose a probability distribution on (called encoding strategy) with associated independent random variables and , respectively. These distributions are known to all participants and induce a third distribution, , on with associated random variable . The deception probability is the probability that the opponent can deceive the receiver with a spoofing attack of order . The following theorem (cf. [7]) provides combinatorial lower bounds.

Theorem 1

Massey In an authentication code with source states and messages, the deception probabilities are bounded below by

An authentication code is called -fold secure against spoofing if for all .

Moreover, we consider the concept of perfect multi-fold secrecy which has been introduced by Stinson [6] and generalizes Shannon’s fundamental idea of perfect (one-fold) secrecy (cf. [5]). We say that an authentication code has perfect -fold secrecy if, for every positive integer , for every set of messages observed in the channel, and for every set of source states, we have

That is, the a posteriori probability distribution on the source states, given that a set of messages is observed, is identical to the a priori probability distribution on the source states.

When clear from the context, we often only write instead of resp. .

Ii-B Combinatorial Designs

We recall the definition of a combinatorial -design. For positive integers and , a - design is a pair , satisfying the following properties:

  1. is a set of elements, called points,

  2. is a family of -subsets of , called blocks,

  3. every -subset of is contained in exactly blocks.

We denote points by lower-case and blocks by upper-case Latin letters. Via convention, let denote the number of blocks. Throughout this article, ‘repeated blocks’ are not allowed, that is, the same -subset of points may not occur twice as a block. If holds, then we speak of a non-trivial -design. For historical reasons, a - design with is called a Steiner -design (sometimes also a Steiner system). The special case of a Steiner design with parameters and is called a Steiner triple system of order . A Steiner design with parameters and is called a Steiner quadruple system of order . Specifically, we are interested in Steiner quadruple systems in this paper. As a simple example, the vector space () with the set of blocks taken to be the set of all subsets of four distinct elements of whose vector sum is zero, is a non-trivial boolean Steiner quadruple system . More geometrically, these consist of the points and planes of the -dimensional binary affine space .


Fig. 1: Illustration of the unique , with three types of blocks: faces, opposite edges, and inscribed regular tetrahedra.

For the existence of -designs, basic necessary conditions can be obtained via elementary counting arguments (see, for instance, [10]):

Lemma 1

Let be a - design, and for a positive integer , let with . Then the number of blocks containing each element of is given by

In particular, for , a - design is also an - design.

It is customary to set denoting the number of blocks containing a given point. It follows

Lemma 2

Let be a - design. Then the following holds:

  1. for .

For encyclopedic accounts of key results in design theory, we refer to [10, 11]. Various connections of designs with coding and information theory can be found in a recent survey [12] (with many additional references therein).

Iii Optimal Authentication Codes

For our further purposes, we summarize the state-of-the-art for authentication codes which bear no secrecy assumptions. The following theorem (cf. [7, 13]) gives a combinatorial lower bound on the number of encoding rules.

Theorem 2

Massey–Schöbi If an authentication code is -fold against spoofing, then the number of encoding rules is bounded below by

An authentication code is called optimal if the number of encoding rules meets the lower bound with equality. When the source states are known to be independent and equiprobable, optimal authentication codes which are -fold secure against spoofing can be constructed via -designs (cf. [6, 13, 14]).

Theorem 3

DeSoete–Schöbi–Stinson Suppose there is a - design. Then there is an authentication code for equiprobable source states, having messages and encoding rules, that is -fold secure against spoofing. Conversely, if there is an authentication code for equiprobable source states, having messages and encoding rules, that is -fold secure against spoofing, then there is a Steiner - design.

Iv Stinson’s Constructions & Recent Results

Using the notation introduced in Section II-A, we review in Tables I and II previous constructions from [6, 1] for equiprobable source probability distributions. This lists all presently known optimal authentication codes with perfect secrecy.

Ref.
1 1 [6]
prime power even
1 1 (mod ) [1]
1 1 (mod ) [1]
1 1 (mod ) [1]
2 1 [1]
prime power even
2 1 (mod ) [1]
TABLE I: Optimal authentication codes with perfect secrecy:
Infinite classes
Ref.
2 1 5 26 260 [1]
5 11 66 [1]
7 23 253 [1]
5 23 1.771 [1]
5 47 35.673 [1]
3 1 5 83 367.524 [1]
5 71 194.327 [1]
5 107 1.032.122 [1]
5 131 2.343.328 [1]
5 167 6.251.311 [1]
5 243 28.344.492 [1]
6 12 132 [1]
4 1 6 84 5.145.336 [1]
6 244 1.152.676.008 [1]
TABLE II: Optimal authentication codes with perfect secrecy:
Further examples

V New Constructions

Starting from the condition of perfect -fold secrecy, we obtain via Bayes’ Theorem that

It follows

Lemma 3

An authentication code has perfect -fold secrecy if and only if, for every positive integer , for every set of messages observed in the channel and for every set of source states, we have

Hence, if the encoding rules in a code are used with equal probability, then for every , a given set of messages occurs with the same frequency in each columns of the encoding matrix.

We can now establish an extension of the main theorem in [1]. Our construction yields optimal authentication codes which are multi-fold secure against spoofing and provide perfect multi-fold secrecy.

Theorem 4

Suppose there is a Steiner - design, where divides the number of blocks for every positive integer . Then there is an optimal authentication code for equiprobable source states, having messages and encoding rules, that is ()-fold secure against spoofing and simultaneously provides perfect -fold secrecy.

{proof}

Let be a Steiner - design, where divides for every positive integer . By Theorem 3, the authentication code has -fold security against spoofing attacks. Hence, it remains to prove that the code also achieves perfect -fold secrecy under the assumption that the encoding rules are used with equal probability. With respect to Lemma 3, we have to show that, for every , a given set of messages occurs with the same frequency in each columns of the resulting encoding matrix. This can be accomplished by ordering, for each , every block of in such a way that every -subset of occurs in each possible choice in precisely blocks. Since every -subset of occurs in exactly blocks due to Lemma 1, necessarily must divide . By Lemma 2 (b), this is equivalent to saying that divides . To show that the condition is also sufficient, we consider the bipartite (-subset, block) incidence graph of with vertex set , where is an edge if and only if () for and . An ordering on each block of can be obtained via an edge-coloring of this graph using colors in such a way that each vertex is adjacent to one edge of each color, and each vertex is adjacent to edges of each color. Specifically, this can be done by first splitting up each vertex into copies, each having degree , and then by finding an appropriate edge-coloring of the resulting -regular bipartite graph using colors. The claim follows now by taking the ordered blocks as encoding rules, each used with equal probability.

Remark 1

It follows from the proof that we may obtain optimal authentication codes that provide ()-fold security against spoofing and at the same time perfect -fold secrecy for , when the assumption of the above theorem holds with divides for every positive integer .

As an application, we give an infinite class of optimal codes which are two-fold secure against spoofing and achieve perfect two-fold secrecy. This appears to be the first infinite class of authentication and secrecy codes with these properties.

Theorem 5

For all positive integers (mod ), there is an optimal authentication code for equiprobable source states, having messages, and encoding rules, that is two-fold secure against spoofing and provides perfect two-fold secrecy.

{proof}

We will make use of Steiner quadruple systems (cf. Section II-A). Hanani [15] showed that a necessary and sufficient condition for the existence of a is that or (mod ) . Hence, the condition is fulfilled when or (mod ) and the condition when (mod ) in view Lemma 2 (b). Therefore, if we assume that (mod ), then we can apply Theorem 4 to establish the claim.

We present the smallest example:

Example 1

An optimal authentication code for equiprobable source states, having messages, and encoding rules, that is two-fold secure against spoofing and provides perfect two-fold secrecy can be constructed from a Steiner quadruple system . Each encoding rule is used with probability .

Remark 2

For , the first was constructed by Fitting [16], admitting a -cycle as an automorphism (cyclic ). We generally remark that the number of non-isomorphic is only known for with , , and (cf. [17]). Lenz [18] proved that for the admissible values of , the number grows exponentially, i.e. . For comprehensive survey articles on Steiner quadruple systems, we refer the reader to [19, 20]. For classifications of specific classes of highly regular Steiner quadruple systems and Steiner designs, see, e.g., [21, 22].

Acknowledgment

The author thanks Doug Stinson for an interesting conversation on this topic. The author gratefully acknowledges support of his work by the Deutsche Forschungsgemeinschaft (DFG) via a Heisenberg grant (Hu954/4) and a Heinz Maier-Leibnitz Prize grant (Hu954/5).

References

  • [1] M. Huber, “Authentication and secrecy codes for equiprobable source probability distributions”, in Proc. IEEE International Symposium on Information Theory (ISIT) 2009, pp. 1105–1109, 2009.
  • [2] E. N. Gilbert, F. J. MacWilliams and N. J. A. Sloane, “Codes which detect deception”, Bell Syst. Tech. J., vol. 53, pp. 405–424, 1974.
  • [3] G. J. Simmons, “Authentication theory/coding theory”, in Advances in Cryptology – CRYPTO ’84, ed. by G. R. Blakley and D. Chaum, Lecture Notes in Computer Science, vol. 196, Springer, Berlin, Heidelberg, New York, pp. 411–432, 1985.
  • [4] G. J. Simmons, “A survey of information authentication”, in Contemporary Cryptology: The Science of Information Integrity, ed. by G. J. Simmons, IEEE Press, Piscataway, pp. 379–419, 1992.
  • [5] C. E. Shannon, “Communication theory of secrecy systems”, Bell Syst. Tech. J., vol. 28, pp. 656–715, 1949.
  • [6] D. R. Stinson, “The combinatorics of authentication and secrecy codes”, J. Cryptology, vol. 2, pp. 23–49, 1990.
  • [7] J. L. Massey, “Cryptography – a selective survey”, in Digital Communications, ed. by E. Biglieri and G. Prati, North-Holland, Amsterdam, New York, Oxford, pp. 3–21, 1986.
  • [8] D. R. Stinson, “Combinatorial characterizations of authentication codes”, Designs, Codes and Cryptography, vol. 2, pp. 175–187, 1992.
  • [9] D. R. Stinson and R. S. Rees, “Combinatorial characterizations of authentication codes II”, Designs, Codes and Cryptography, vol. 7, pp. 239–259, 1996.
  • [10] Th. Beth, D. Jungnickel and H. Lenz, Design Theory, vol. I and II, Encyclopedia of Math. and Its Applications, vol. 69/78, Cambridge Univ. Press, Cambridge, 1999.
  • [11] C. J. Colbourn and J. H. Dinitz (eds.), Handbook of Combinatorial Designs, 2nd ed., CRC Press, Boca Raton, 2006.
  • [12] M. Huber, “Coding theory and algebraic combinatorics”, in Selected Topics in Information and Coding Theory, ed. by I. Woungang et al., World Scientific, Singapore, 38 pages, 2010 (in press). Preprint at arXiv:0811.1254v1.
  • [13] P. Schöbi, “Perfect authentication systems for data sources with arbitrary statistics” (presented at EUROCRYPT ’86), unpublished.
  • [14] M. De Soete, “Some constructions for authentication - secrecy codes”, in Advances in Cryptology – EUROCRYPT ’88, ed. by Ch. G. Günther, Lecture Notes in Computer Science, vol. 330, Springer, Berlin, Heidelberg, New York, pp. 23–49, 1988.
  • [15] H. Hanani, “On quadruple systems”, Canad. J. Math., vol. 12, pp. 145–157, 1960.
  • [16] F. Fitting, “Zyklische Lösungen des Steiner’schen Problems”, Nieuw. Arch. Wisk., vol. 11, pp. 140–148, 1915.
  • [17] P. Kaski, P. R. J. Östergård and O. Pottonen, “The Steiner quadruple systems of order ”, J. Combin. Theory, Series A, vol. 113, pp. 1764–1770, 2006.
  • [18] H. Lenz, “On the number of Steiner quadruple systems”, Mitt. Math. Sem. Giessen, vol. 169, pp. 55–71, 1985.
  • [19] A. Hartman and K. T. Phelps, “Steiner quadruple systems”, in: Contemporary Design Theory, ed. by J. H. Dinitz and D. R. Stinson, Wiley, New York, pp. 205–240, 1992.
  • [20] C. C. Lindner and A. Rosa, “Steiner quadruple systems – A survey”, Discrete Math., vol. 22, pp. 147–181, 1978.
  • [21] M. Huber, “Almost simple groups with socle acting on Steiner quadruple systems”, J. Combin. Theory, Series A, 4 pages, 2010 (in press). Preprint at arXiv:0907.1281v1.
  • [22] M. Huber, Flag-transitive Steiner Designs, Birkhäuser, Basel, Berlin, Boston, 2009.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
305388
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description