Combined measurements of anomalous charged trilinear gauge-boson couplings from diboson production in p\bar{p} collisions at \sqrt{s}=1.96 TeV

Combined measurements of anomalous charged trilinear gauge-boson couplings from diboson production in collisions at TeV

V.M. Abazov    B. Abbott    M. Abolins    B.S. Acharya    M. Adams    T. Adams    E. Aguilo    M. Ahsan    G.D. Alexeev    G. Alkhazov    A. Alton    G. Alverson    G.A. Alves    L.S. Ancu    M.S. Anzelc    M. Aoki    Y. Arnoud    M. Arov    M. Arthaud    A. Askew    B. Åsman    O. Atramentov    C. Avila    J. BackusMayes    F. Badaud    L. Bagby    B. Baldin    D.V. Bandurin    S. Banerjee    E. Barberis    A.-F. Barfuss    P. Bargassa    P. Baringer    J. Barreto    J.F. Bartlett    U. Bassler    D. Bauer    S. Beale    A. Bean    M. Begalli    M. Begel    C. Belanger-Champagne    L. Bellantoni    A. Bellavance    J.A. Benitez    S.B. Beri    G. Bernardi    R. Bernhard    I. Bertram    M. Besançon    R. Beuselinck    V.A. Bezzubov    P.C. Bhat    V. Bhatnagar    G. Blazey    S. Blessing    K. Bloom    A. Boehnlein    D. Boline    T.A. Bolton    E.E. Boos    G. Borissov    T. Bose    A. Brandt    R. Brock    G. Brooijmans    A. Bross    D. Brown    X.B. Bu    D. Buchholz    M. Buehler    V. Buescher    V. Bunichev    S. Burdin    T.H. Burnett    C.P. Buszello    P. Calfayan    B. Calpas    S. Calvet    J. Cammin    M.A. Carrasco-Lizarraga    E. Carrera    W. Carvalho    B.C.K. Casey    H. Castilla-Valdez    S. Chakrabarti    D. Chakraborty    K.M. Chan    A. Chandra    E. Cheu    D.K. Cho    S.W. Cho    S. Choi    B. Choudhary    T. Christoudias    S. Cihangir    D. Claes    J. Clutter    M. Cooke    W.E. Cooper    M. Corcoran    F. Couderc    M.-C. Cousinou    D. Cutts    M. Ćwiok    A. Das    G. Davies    K. De    S.J. de Jong    E. De La Cruz-Burelo    K. DeVaughan    J.D. Degenhardt    F. Déliot    M. Demarteau    R. Demina    D. Denisov    S.P. Denisov    S. Desai    H.T. Diehl    M. Diesburg    A. Dominguez    T. Dorland    A. Dubey    L.V. Dudko    L. Duflot    D. Duggan    A. Duperrin    S. Dutt    A. Dyshkant    M. Eads    D. Edmunds    J. Ellison    V.D. Elvira    Y. Enari    S. Eno    M. Escalier    H. Evans    A. Evdokimov    V.N. Evdokimov    G. Facini    A.V. Ferapontov    T. Ferbel    F. Fiedler    F. Filthaut    W. Fisher    H.E. Fisk    M. Fortner    H. Fox    S. Fu    S. Fuess    T. Gadfort    C.F. Galea    A. Garcia-Bellido    V. Gavrilov    P. Gay    W. Geist    W. Geng    C.E. Gerber    Y. Gershtein    D. Gillberg    G. Ginther    B. Gómez    A. Goussiou    P.D. Grannis    S. Greder    H. Greenlee    Z.D. Greenwood    E.M. Gregores    G. Grenier    Ph. Gris    J.-F. Grivaz    A. Grohsjean    S. Grünendahl    M.W. Grünewald    F. Guo    J. Guo    G. Gutierrez    P. Gutierrez    A. Haas    P. Haefner    S. Hagopian    J. Haley    I. Hall    R.E. Hall    L. Han    K. Harder    A. Harel    J.M. Hauptman    J. Hays    T. Hebbeker    D. Hedin    J.G. Hegeman    A.P. Heinson    U. Heintz    C. Hensel    I. Heredia-De La Cruz    K. Herner    G. Hesketh    M.D. Hildreth    R. Hirosky    T. Hoang    J.D. Hobbs    B. Hoeneisen    M. Hohlfeld    S. Hossain    P. Houben    Y. Hu    Z. Hubacek    N. Huske    V. Hynek    I. Iashvili    R. Illingworth    A.S. Ito    S. Jabeen    M. Jaffré    S. Jain    K. Jakobs    D. Jamin    R. Jesik    K. Johns    C. Johnson    M. Johnson    D. Johnston    A. Jonckheere    P. Jonsson    A. Juste    E. Kajfasz    D. Karmanov    P.A. Kasper    I. Katsanos    V. Kaushik    R. Kehoe    S. Kermiche    N. Khalatyan    A. Khanov    A. Kharchilava    Y.N. Kharzheev    D. Khatidze    M.H. Kirby    M. Kirsch    B. Klima    J.M. Kohli    J.-P. Konrath    A.V. Kozelov    J. Kraus    T. Kuhl    A. Kumar    A. Kupco    T. Kurča    V.A. Kuzmin    J. Kvita    F. Lacroix    D. Lam    S. Lammers    G. Landsberg    P. Lebrun    H.S. Lee    W.M. Lee    A. Leflat    J. Lellouch    L. Li    Q.Z. Li    S.M. Lietti    J.K. Lim    D. Lincoln    J. Linnemann    V.V. Lipaev    R. Lipton    Y. Liu    Z. Liu    A. Lobodenko    M. Lokajicek    P. Love    H.J. Lubatti    R. Luna-Garcia    A.L. Lyon    A.K.A. Maciel    D. Mackin    P. Mättig    R. Magaña-Villalba    P.K. Mal    S. Malik    V.L. Malyshev    Y. Maravin    B. Martin    R. McCarthy    C.L. McGivern    M.M. Meijer    A. Melnitchouk    L. Mendoza    D. Menezes    P.G. Mercadante    M. Merkin    K.W. Merritt    A. Meyer    J. Meyer    N.K. Mondal    R.W. Moore    T. Moulik    G.S. Muanza    M. Mulhearn    O. Mundal    L. Mundim    E. Nagy    M. Naimuddin    M. Narain    H.A. Neal    J.P. Negret    P. Neustroev    H. Nilsen    H. Nogima    S.F. Novaes    T. Nunnemann    G. Obrant    C. Ochando    D. Onoprienko    J. Orduna    N. Oshima    N. Osman    J. Osta    R. Otec    G.J. Otero y Garzón    M. Owen    M. Padilla    P. Padley    M. Pangilinan    N. Parashar    S.-J. Park    S.K. Park    J. Parsons    R. Partridge    N. Parua    A. Patwa    G. Pawloski    B. Penning    M. Perfilov    K. Peters    Y. Peters    P. Pétroff    R. Piegaia    J. Piper    M.-A. Pleier    P.L.M. Podesta-Lerma    V.M. Podstavkov    Y. Pogorelov    M.-E. Pol    P. Polozov    A.V. Popov    M. Prewitt    S. Protopopescu    J. Qian    A. Quadt    B. Quinn    A. Rakitine    M.S. Rangel    K. Ranjan    P.N. Ratoff    P. Renkel    P. Rich    M. Rijssenbeek    I. Ripp-Baudot    F. Rizatdinova    S. Robinson    M. Rominsky    C. Royon    P. Rubinov    R. Ruchti    G. Safronov    G. Sajot    A. Sánchez-Hernández    M.P. Sanders    B. Sanghi    G. Savage    L. Sawyer    T. Scanlon    D. Schaile    R.D. Schamberger    Y. Scheglov    H. Schellman    T. Schliephake    S. Schlobohm    C. Schwanenberger    R. Schwienhorst    J. Sekaric    H. Severini    E. Shabalina    M. Shamim    V. Shary    A.A. Shchukin    R.K. Shivpuri    V. Siccardi    V. Simak    V. Sirotenko    P. Skubic    P. Slattery    D. Smirnov    G.R. Snow    J. Snow    S. Snyder    S. Söldner-Rembold    L. Sonnenschein    A. Sopczak    M. Sosebee    K. Soustruznik    B. Spurlock    J. Stark    V. Stolin    D.A. Stoyanova    J. Strandberg    M.A. Strang    E. Strauss    M. Strauss    R. Ströhmer    D. Strom    L. Stutte    S. Sumowidagdo    P. Svoisky    M. Takahashi    A. Tanasijczuk    W. Taylor    B. Tiller    M. Titov    V.V. Tokmenin    I. Torchiani    D. Tsybychev    B. Tuchming    C. Tully    P.M. Tuts    R. Unalan    L. Uvarov    S. Uvarov    S. Uzunyan    P.J. van den Berg    R. Van Kooten    W.M. van Leeuwen    N. Varelas    E.W. Varnes    I.A. Vasilyev    P. Verdier    L.S. Vertogradov    M. Verzocchi    M. Vesterinen    D. Vilanova    P. Vint    P. Vokac    R. Wagner    H.D. Wahl    M.H.L.S. Wang    J. Warchol    G. Watts    M. Wayne    G. Weber    M. Weber    L. Welty-Rieger    A. Wenger    M. Wetstein    A. White    D. Wicke    M.R.J. Williams    G.W. Wilson    S.J. Wimpenny    M. Wobisch    D.R. Wood    T.R. Wyatt    Y. Xie    C. Xu    S. Yacoob    R. Yamada    W.-C. Yang    T. Yasuda    Y.A. Yatsunenko    Z. Ye    H. Yin    K. Yip    H.D. Yoo    S.W. Youn    J. Yu    C. Zeitnitz    S. Zelitch    T. Zhao    B. Zhou    J. Zhu    M. Zielinski    D. Zieminska    L. Zivkovic    V. Zutshi    E.G. Zverev (The DØ Collaboration) Universidad de Buenos Aires, Buenos Aires, Argentina LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil Universidade Federal do ABC, Santo André, Brazil Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil University of Alberta, Edmonton, Alberta, Canada; Simon Fraser University, Burnaby, British Columbia, Canada; York University, Toronto, Ontario, Canada and McGill University, Montreal, Quebec, Canada University of Science and Technology of China, Hefei, People’s Republic of China Universidad de los Andes, Bogotá, Colombia Center for Particle Physics, Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic Czech Technical University in Prague, Prague, Czech Republic Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic Universidad San Francisco de Quito, Quito, Ecuador LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France LAL, Université Paris-Sud, IN2P3/CNRS, Orsay, France LPNHE, IN2P3/CNRS, Universités Paris VI and VII, Paris, France CEA, Irfu, SPP, Saclay, France IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany Physikalisches Institut, Universität Bonn, Bonn, Germany Physikalisches Institut, Universität Freiburg, Freiburg, Germany II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany Institut für Physik, Universität Mainz, Mainz, Germany Ludwig-Maximilians-Universität München, München, Germany Fachbereich Physik, University of Wuppertal, Wuppertal, Germany Panjab University, Chandigarh, India Delhi University, Delhi, India Tata Institute of Fundamental Research, Mumbai, India University College Dublin, Dublin, Ireland Korea Detector Laboratory, Korea University, Seoul, Korea SungKyunKwan University, Suwon, Korea CINVESTAV, Mexico City, Mexico FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands Joint Institute for Nuclear Research, Dubna, Russia Institute for Theoretical and Experimental Physics, Moscow, Russia Moscow State University, Moscow, Russia Institute for High Energy Physics, Protvino, Russia Petersburg Nuclear Physics Institute, St. Petersburg, Russia Stockholm University, Stockholm, Sweden, and Uppsala University, Uppsala, Sweden Lancaster University, Lancaster, United Kingdom Imperial College, London, United Kingdom University of Manchester, Manchester, United Kingdom University of Arizona, Tucson, Arizona 85721, USA California State University, Fresno, California 93740, USA University of California, Riverside, California 92521, USA Florida State University, Tallahassee, Florida 32306, USA Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA University of Illinois at Chicago, Chicago, Illinois 60607, USA Northern Illinois University, DeKalb, Illinois 60115, USA Northwestern University, Evanston, Illinois 60208, USA Indiana University, Bloomington, Indiana 47405, USA University of Notre Dame, Notre Dame, Indiana 46556, USA Purdue University Calumet, Hammond, Indiana 46323, USA Iowa State University, Ames, Iowa 50011, USA University of Kansas, Lawrence, Kansas 66045, USA Kansas State University, Manhattan, Kansas 66506, USA Louisiana Tech University, Ruston, Louisiana 71272, USA University of Maryland, College Park, Maryland 20742, USA Boston University, Boston, Massachusetts 02215, USA Northeastern University, Boston, Massachusetts 02115, USA University of Michigan, Ann Arbor, Michigan 48109, USA Michigan State University, East Lansing, Michigan 48824, USA University of Mississippi, University, Mississippi 38677, USA University of Nebraska, Lincoln, Nebraska 68588, USA Princeton University, Princeton, New Jersey 08544, USA State University of New York, Buffalo, New York 14260, USA Columbia University, New York, New York 10027, USA University of Rochester, Rochester, New York 14627, USA State University of New York, Stony Brook, New York 11794, USA Brookhaven National Laboratory, Upton, New York 11973, USA Langston University, Langston, Oklahoma 73050, USA University of Oklahoma, Norman, Oklahoma 73019, USA Oklahoma State University, Stillwater, Oklahoma 74078, USA Brown University, Providence, Rhode Island 02912, USA University of Texas, Arlington, Texas 76019, USA Southern Methodist University, Dallas, Texas 75275, USA Rice University, Houston, Texas 77005, USA University of Virginia, Charlottesville, Virginia 22901, USA University of Washington, Seattle, Washington 98195, USA
July 28, 2009
Abstract

We present measurements of the anomalous and trilinear gauge couplings from a combination of four diboson production and decay channels using data collected by the D0 detector at the Fermilab Tevatron Collider. These results represent the first high statistics combination of limits across different diboson production processes at the Tevatron and use data corresponding to an integrated luminosity of approximately 1 fb. When respecting symmetry, we measure central values and 68% C.L. allowed intervals of , and . We present the most stringent measurements to date for the boson magnetic dipole and electromagnetic quadrupole moments of and , respectively.

pacs:
14.70.Fm, 13.40.Em, 13.85.Rm, 14.70.Hp

FERMILAB-PUB-09-380-E

The gauge theory of electroweak interactions contains a striking feature. In quantum electrodynamics, the photons carry no electric charge and thus lack photon-to-photon couplings and do not self-interact. In contrast, the weak vector bosons carry weak charge and do interact amongst themselves through trilinear and quartic gauge boson vertices.

The most general and interactions can be described lagrangian (); HWZ () using a Lorentz invariant effective Lagrangian that contains fourteen dimensionless couplings, seven each for and . Assuming electromagnetic gauge invariance and conservation reduces the number of independent couplings to five (electromagnetic gauge invariance requires ), and the Lagrangian takes the form:

where denotes the boson field, , , or , and is the mass of the boson. The global coupling parameters are and , as in the standard model (SM) in which and are the magnitude of the electron charge and the weak mixing angle, respectively. In the SM and . For convenience, anomalous trilinear gauge couplings (anomalous TGCs) and are defined as and , respectively.

The boson magnetic dipole and electric quadrupole moments may be expressed in terms of the coupling parameters as

As mentioned above, .

If the coupling parameters have non-SM values then the amplitudes for gauge boson pair production grow with energy, eventually violating tree-level unitarity. The unitarity violation can be controlled by parametrizing the anomalous couplings as dipole form factors with a cutoff scale, . The anomalous couplings then take a form in which is the center-of-mass energy of the colliding partons and is the coupling value in the limit  newref (). The quantity is physically interpreted as the mass scale where the new phenomenon responsible for the anomalous couplings is directly observable. The cutoff is conservatively set at the limit of sensitivity, close to the collision center-of-mass energy. We use  TeV; coupling limits depend only weakly on for  TeV in hadronic collisions at Tevatron energies.

We measure the electroweak coupling parameters through the study of gauge boson pairs. Several processes contribute to SM boson pair production. Fig. 1(a) shows -channel production of dibosons in which are , , or . The -channel production shown in Fig. 1(b) involves boson self-interactions through a trilinear gauge vertex. Final states () produced via the coupling are or . Final states produced through the coupling are or . The typical effect of anomalous TGCs is to increase the cross section especially at high boson transverse momentum (). We thus analyze corresponding observables to measure such effects.

Figure 1: Vector boson pair production via (a) -channel and (b) -channel diagrams. For and , . For , .

Previously published limits on anomalous TGCs from a combination of channels come from the D0 Collaboration in the 1992-1996 Tevatron run with integrated luminosity () of 100 pb run1prd (), the CDF Collaboration with the current Tevatron run ( pbcdfresult (), and LEP2 experiments LEP (). The best previously published boson magnetic dipole moment result is from a combination of measurements by the DELPHI Collaboration delphi ().

In this Letter, we investigate the and trilinear vertices through diboson production. We set limits on the non-SM or anomalous TGC parameters , , and . These limits are derived from a combination of previously published measurements involving four final states:  wgamprl (),  wwpaper (),  wzpaper (), and  wwwzpaper (), in which is an electron or muon, is a neutrino, and is a jet. Each measurement used data collected by the D0 detector dzeronim () from collisions at  TeV delivered by the Fermilab Tevatron Collider.

The process is sensitive only to the coupling. The process was studied with data corresponding to 0.7 fb wgamprl (). The main requirements were an electron with transverse energy 25 GeV or a muon with transverse momentum 20 GeV, a photon with 9 GeV, missing transverse energy 25 (20) GeV for the electron (muon) channel, and separation between the photon and lepton in measures () space of . Furthermore, to suppress final state radiation the three-body transverse mass mt3 () of the lepton, photon, and  was required to exceed 120 (110) GeV for the electron (muon) channel. In total 180 (83) candidate events were observed. After subtracting backgrounds, the signal was events, consistent with the SM prediction of events for the channel. The photon spectra of the candidates in the data and those estimated for the backgrounds are input into the combination. For production in the presence of TGCs, spectra were simulated using the Baur Monte Carlo (MC) baurwgamlo (); baurwgamnlo () with a fine grid in space.

The measurement wwpaper () used data corresponding to an integrated luminosity of 1 fb. The data were divided into three channels defined by the flavor of the leptons from the boson decays: , , and . For all channels, the leading lepton had 25 GeV and the trailing lepton had 15 GeV. The leptons were required to have opposite charge. In the data 22 (), 64 () and 14 () candidate events were observed, consistent with the sum of SM and backgrounds of (), () and () events. Two-dimensional histograms of leading and trailing lepton were produced for the data and backgrounds and used as inputs in the combination. Distributions for SM and anomalous TGC values were generated using the event generator from Hagiwara, Zeppenfeld, and Woodside (HZW) HWZ ().

The measurement wzpaper () selected the four final states , , , and . The data corresponded to an integrated luminosity of 1 fb. All three charged leptons were required to have  GeV. boson candidates consisted of like-flavor lepton pairs with mass  GeV or  GeV. For the and channels, the oppositely charged lepton pair with mass closest to the pole mass was chosen as the boson candidate. To select boson candidates, the  must have exceeded 20 GeV. To reduce background events from to a negligible level, the magnitude of the vector sum of the charged lepton transverse momenta and the  was required to be less than 50 GeV. The sum over all channels yielded 13 candidate events in the data consistent with a SM estimate of events and background events. The of the boson is sensitive to anomalous TGCs and is used in the combination. The HZW MC is used to estimate the SM spectrum as well as spectra from anomalous TGCs.

Finally, the measurement wwwzpaper () selected events in which one boson decays leptonically and the other boson decays hadronically. The data corresponded to an integrated luminosity of  fb. The main requirements were an electron or muon with 20 GeV, 20 GeV, and at least two jets with 20 GeV with the leading jet satisfying 30 GeV. In total 12,473 (14,392) candidate events in the channel were observed, consistent with the SM prediction of 12,460550 (14,370620) events lnujjcaveat (). An observable sensitive to anomalous TGCs is the of the dijet system. The data and background spectra for this variable are used as inputs for the combination. Spectra with anomalous TGCs were generated with the HZW MC.

Distributions of the sensitive observables mentioned above for each final state are generated for signal with the corresponding Monte Carlos and for backgrounds using simulations or data. The signal distributions vary as a function of the TGC parameters under study both in spectral shape and event yield. In addition to allowing variation in the TGC parameters themselves, nuisance parameters are used to allow systematic offsets to vary within their uncertainties. A simultaneous fit to the data distributions is performed in order to determine the anomalous TGC limits. The function used in this fit is wadeLim ():

(1)

in which the variables and index the number of histogram bins () and the number of systematic uncertainties () respectively. In this function is the Poisson probability for events with a mean of events; is the Gaussian probability for the value in a distribution with a mean value of and a variance ; (in vector form as ) is a dimensionless parameter describing departures in nuisance parameters in units of the associated systematic uncertainty ; is the number of data events in bin ; and is the number of predicted events in bin . The number of bins used in the fit is the sum of the number of bins in each kinematic distribution for each channel.

In total 49 sources of systematic uncertainty are considered. As implied in Eq. 1, systematic uncertainties are treated as Gaussian priors on the expected number(s) of events. Systematic uncertainties on the luminosity, lepton identification, and theoretical uncertainties on the cross sections for the backgrounds estimated from MC are correlated across all observables. Uncertainties on background estimates based on data are correlated across specific final states within a diboson production channel as appropriate. The uncertainties with the largest impact on the result are those related to background cross sections and the luminosity. The effect of incorporating systematic uncertainties into the fit is to degrade the resulting limits by 30%.

Four two-dimensional surfaces in TGC space are examined: (a) each of the three pairings of the three free parameters (, , ) while respecting symmetry by using the constraints lepscen () and (b) the plane for the equal-couplings scenario HWZ () in which , . The two-dimensional 68% and 95% C.L. contours are shown in Figs. 2 and 3. The two-dimensional contours for boson magnetic dipole and electric quadrupole moments are shown in Fig. 4. The one-dimensional 68% and 95% C.L. limits for each coupling parameter, with the other couplings parameters fixed at their SM values, are shown in Table 1.

Results respecting symmetry
Parameter Minimum 68% C.L. 95% C.L.
Results for equal-couplings
Parameter Minimum 68% C.L. 95% C.L.
Table 1: One-dimensional minimum and 68% and 95% C.L. allowed intervals on anomalous values of and TGCs. Note that and are in units of and respectively.

These results provide the most stringent limits on anomalous values of and TGCs measured from hadronic collisions to date. The 95% C.L. limits in both scenarios represent an improvement relative to the previous D0 run1prd () and CDF cdfresult () results of about a factor of 3. When respecting symmetry, our measurements with 68% C.L. allowed intervals of , and are only factors of approximately 2 – 3 times less sensitive than the combined results from the four LEP2 experiments: , and , also at 68% C.L. LEP (). Furthermore, with only 1 fb of data our sensitivity is comparable to that of an individual LEP2 experiment aleph (); opal (); l3 (); delphi ().

We also extract measurements of the boson magnetic dipole and electric quadrupole moments. When respecting symmetry with we measure 68% C.L. intervals (one-dimensional with the other parameter held at its SM value) of and , respectively. The most stringent previously published result is and from the DELPHI Collaboration delphi ().

In summary, we presented measurements of anomalous and trilinear gauge couplings and related boson magnetic dipole and electric quadrupole moments based on the combination of four diboson production and decay channels using  fb of data collected with the D0 detector at the Fermilab Tevatron Collider. While many of the measurements considered in this combination are limited by statistics, projections indicate that a combination of CDF and D0 data with 5 fb each will improve the sensitivity to levels comparable or better than the combined LEP2 limits.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany).

References

  • (a) Visitor from Augustana College, Sioux Falls, SD, USA.
  • (b) Visitor from Rutgers University, Piscataway, NJ, USA.
  • (c) Visitor from The University of Liverpool, Liverpool, UK.
  • (d) Visitor from Centro de Investigacion en Computacion - IPN, Mexico City, Mexico.
  • (e) Visitor from ECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico.
  • (f) Visitor from Universität Bern, Bern, Switzerland.
  • (g) Visitor from Universität Zürich, Zürich, Switzerland.
  • (8) K. Hagiwara, R. D. Peccei, and D. Zeppenfeld, Nucl. Phys. B282, 253 (1987).
  • (9) K. Hagiwara, J. Woodside, and D. Zeppenfeld, Phys. Rev. D 41, 2113 (1990).
  • (10) Limits on anomalous couplings presented in this Letter are given as the low energy limits of the couplings.
  • (11) B. Abbott et al. (D0 Collaboration), Phys. Rev. D 60, 072002 (1999).
  • (12) T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 76, 111103(R) (2007).
  • (13) C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008); P. Bambade et al. (LEP Collaborations), arXiv:hep-ex/0307056 (2003); J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 54, 345 (2008).
  • (14) P. Abreu et al. (DELPHI Collaboration), Phys.  Lett.  B 502, 9 (2001).
  • (15) V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 100, 241805 (2008).
  • (16) V. M. Abazov et al. (D0 Collaboration), arXiv:0904.0673 [hep-ex] (2009), submitted to Phys. Rev. Lett.
  • (17) V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 76, 111104(R) (2007).
  • (18) V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 102, 161801 (2009); V. M. Abazov et al. (D0 Collaboration), arXiv:0907.4398 [hep-ex] (2009), submitted to Phys. Rev. D.
  • (19) V. M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods Phys. Res. A 565, 463 (2006).
  • (20) D0 uses a cylindrical coordinate system with the axis running along the beam axis. Angles and are the polar and azimuthal angles, respectively. Pseudorapidity is defined as in which is measured with respect to the primary vertex. In the massless limit, is equivalent to the rapidity . is the pseudorapidity measured with respect to the center of the detector.
  • (21) U. Baur, S. Errede and G. Landsberg, Phys. Rev. D 50, 1917 (1994).
  • (22) U. Baur and E. L. Berger, Phys. Rev. D 41, 1476 (1990).
  • (23) U. Baur, T. Han, and J. Ohnemus, Phys. Rev. D 48, 5140 (1993).
  • (24) Note that the backgrounds for the measurement, +jets, +jets, and single top, were all modeled with Monte Carlo simulations. The dominant +jets background was scaled to match the data, while all other backgrounds were normalized using SM next-to-leading order or next-to-next-to-leading-order predictions for cross sections.
  • (25) W. Fisher, FERMILAB-TM-2386-E (2007).
  • (26) M. Bilenky, J. L. Kneur, F. M. Renard and D. Schildknecht, Nucl.  Phys.  B 409, 22 (1993); Nucl. Phys.  B 419, 240 (1994).
  • (27) S. Schael et al. (ALEPH Collaboration), Phys.  Lett.  B 614, 7 (2005).
  • (28) G. Abbiendi et al. (OPAL Collaboration), Eur.  Phys.  J. C 33, 463 (2004).
  • (29) P. Achard et al. (L3 Collaboration), Phys.  Lett.  B 586, 151 (2004).
Figure 2: Two-dimensional 68% and 95% C.L. limits when respecting symmetry and assuming TeV, for (a) vs. , (b) vs. , and (c) vs. . In each case, the third coupling is set to its SM value.
Figure 3: Two-dimensional 68% and 95% C.L. limits for vs. when enforcing the equal-couplings constraints and assuming  TeV.
Figure 4: Two-dimensional 68% and 95% C.L. limits for the boson electric quadrupole moment vs. the magnetic dipole moment (a) when respecting symmetry and (b) when enforcing equal-couplings constraints. In both cases we assume  TeV.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
164847
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description