BuryakOkounkov formula for the point function and a new proof of the Witten conjecture
Abstract.
We identify the formulas of Buryak and Okounkov for the point functions of the intersection numbers of psiclasses on the moduli spaces of curves. This allows us to combine the earlier known results and this one into a principally new proof of the famous Witten conjecture / Kontsevich theorem, where the link between the intersection theory of the moduli spaces and integrable systems is established via the geometry of double ramification cycles.
Contents
1. Introduction
The symbol denotes the intersection number . It can be nonzero only if , , , , and . Witten conjectured [WittenConj] that the generating function of these intersection numbers defined as
is the logarithm of the unique taufunction of the Kortewegde Vries (KdV) hierachy that in addition satisfies the string equation,
The string equation is easy to prove, see [WittenConj], so the main part of the conjecture is the equations of the KdV hierarchy.
This conjecture was first proved by Kontsevich in [Kontsevich] using the StrebelPenner ribbon graph model of the moduli space of curves, and later on more proofs have appeared. Mirzakhani [mirzakhani] used symplectic reduction for the WeilPeterson volumes of the moduli space, and Okounkov and Pandharipande [okounkovpand] and Kazarian and Lando [kazarianlando] used the ELSV formula that connects the intersection theory and Hurwitz numbers. There are more papers where the Witten conjecture / Kontsevich theorem is proved (see e. g. [OkounkovMain, MulaseSafnuk, Kazarian, KimLiu, ChenLiLiu, Witten]), but on the geometric side they all use one of the ideas mentioned above: the StrebelPenner ribbon graph model, symplectic reduction, or the ELSV formula for Hurwitz numbers.
In this paper we give a new proof of the Witten conjecture based on a completely different geometric idea than any of the earlier existing proofs: the intersection theory of double ramification cycles. More precisely, the full proof that we explain here consists of four big steps, where three of them were already available in the literature, and the fourth missing one is the main subject of this paper:

In [BSSZ] Buryak et al. fully described the intersection numbers of the monomials of psiclasses with the double ramification cycles.

In [BuryakMain] Buryak used the previous result and a relation between the double ramification cycles and the fundamental cycles of the moduli spaces of curves to describe explicitly the socalled point function , .

In [OkounkovMain] Okounkov proved a different explicit formula for the point functions and he showed in Section 3 of op. cit. that the generating function of their coefficients is the logarithm of the string taufunction of the KdV hierarchy.

In this paper we identify Buryak’s and Okounkov’s formulas for the point function, and this makes the sequence of papers [BSSZ] [BuryakMain] the present paper [OkounkovMain, Section 3] a new proof of the Witten conjecture.
Let us say a few words about the geometric techniques used in [BSSZ] and [BuryakMain]. A double ramification cycle , , is the class of a certain compactification of the locus of the isomorphism classes of smooth curves with marked points such that is the divisor of a meromorphic function . These cycles inherit rich geometry of the space of maps to and this allows to express the psiclasses restricted to these cycles in terms of the double ramification cycles of smaller dimension, which is in principle enough to compute all intersection numbers of psiclasses with the double ramification cycles. Next, observe that under the projection that forgets marked points the pushforward of a double ramification cycle is a multiple of the fundamental cycle of . This relates the intersection numbers of psiclasses on double ramification cycles to . There is, of course, a long way from these computational ideas to nice closed formulas derived in [BSSZ] and [BuryakMain].
This idea of computation of the intersection numbers has been used in a number of earlier papers, cf. [ShaUMN03, ShaIMRN03, Sha05, Sha06, Bursha], and these papers might serve a good source of examples of particular computations. In particular, an explicit algorithm for the computation of all intersection numbers is given in [ShaZvo08]. We have to warn the reader, however, that there are different versions of double ramification cycles used in the literature depending on what particular compactification of the space of maps is used in the construction, cf. a discussion in [BSSZ, Section 2.3].
Exactly the same idea of computation of the intersection numbers of classes is proposed in [costello, Section 9]. It is mentioned in [costello, Section 1.3] that for the further applications of the results of that paper a required first step is to give a new proof of Witten’s conjecture [WittenConj] using the technique developed there. So, it is precisely what the present paper (combined with [BSSZ], [BuryakMain], and [OkounkovMain]) does.
Finally, to conclude the introduction, let us mention that the point functions for the intersection numbers of psiclasses have recently been studied from different points of view, see [EOr, LiuXu, Zhou, bertoladubyang, ZhouEmergent, BH0704, BH0709, AMMP]. The comparison of different formulas and recursive relations for their coefficients is very interesting and usually highly nontrivial, and this paper can also be considered as a step towards unification (see also [ZhouEmergent]) of the variety of formulas for the point functions.
1.1. Organization of the paper
In Section 2 we recall the formulas of Buryak and Okounkov and some statements about these formulas that we use in this paper, and state our main results. In Section 3 we derive an equivalent form of the Buryak formula. In Section 4 we prove that the principal terms in Buryak and Okounkov formulas coincide. In Section 5 we prove that all other terms, namely, the socalled diagonal terms needed for a regularization of the principal ones, also coincide in Buryak and Okounkov formulas.
1.2. Acknowledgments
We thank G. Carlet and R. Kramer for useful discussions. A. A. was supported by IBSR003D1 and by RFBR grant 170100585. F. H. I. and S. S. were supported by the Netherlands Organization for Scientific Research. A.A. wishes to thank the KdV Institute for its kind hospitality.
2. Buryak and Okounkov formulas
In this section we recall the formulas for the point functions in [BuryakMain] and [OkounkovMain]. It is convenient to append the intersection numbers by two unstable cases and . Namely, we assume by definition that and , and we add these terms to and , respectively.
2.1. Formula of Buryak
Let . Define the function by and for we have
(1) 
Though it is not obvious from the definition, is a formal power series in all its variables, which is invariant with respect to the diagonal action of the symmetric group on and , see [BSSZ, Remarks 1.5 and 1.6].
Define the function as the Gaussian integral
Theorem 2.1 (Buryak [BuryakMain]).
For we have .
2.2. Formula of Okounkov
Define the function as
where denotes . Then the function defined as
is invariant under the action on .
Denote by the set of all partitions of the set into a disjoint union of unordered subsets , for all . Let , . Define the function as
and the function as
Theorem 2.2 (Okounkov [OkounkovMain]).
The generating function of the coefficients of , , is the logarithm of the string taufunction of the KdV hierarchy.
2.3. Main theorem
We are ready to state our main result.
Theorem 2.3.
We have: , .
The rest of the paper is devoted to the proof of this theorem. An immediate corollary of Theorems 2.1, 2.2, and 2.3 is the following:
Corollary 2.4.
The Witten conjecture is true, that is, the function is the string taufunction of the KdV hierarchy.
As we explain in the introduction, the real importance of this new proof of the Witten conjecture is that it uses a new way to relate the intersection theory of the moduli space of curves to the theory of integrable hierarchies, based on geometry of double ramification cycles. Otherwise, though Theorem 2.3 is interesting by itself, the identity has an alternative proof in [OkounkovMain, Section 2].
3. Buryak formula revisited
Our first goal is to translate the cumbersome formula of Buryak into something more manageable. Let and .
Proposition 3.1.
For we have:
(2) 
It is clearly true for and we prove it below for . Now the function is manifestly invariant with respect to the diagonal action of the symmetric group on and .
Corollary 3.2.
We have:
(3) 
3.1. Proof of Proposition 3.1
Assume that . Expanding the definition of the function allows us to rewrite Equation (1) for as
(4) 
3.1.1. Exponential terms in the numerators
In order to identify Equations (2) and (4), we consider for each particular fixed sequence of signs , , all terms in Equations (2) and (4) where the numerator is equal to , , and prove that the total coefficient of coincides in both formulas. The symbols , , are understood in the rest of the proof as just formal variables satisfying the relations .
Let denote the set . For and we define
It is a convenient way to keep track of signs in the exponential terms in the numerators of (2) and (4). It is easy to see that

In Equation (2) the numerators are indexed by , for all ;

In Equation (4) the numerators are indexed by , for all such that and for all .
So, we have to obtain a full description of all , and as above such that .
3.1.2. Notation for the symmetric group
Decompose as , where denotes the subgroup of permutations such that .
Denote by , , the cyclic permutation . Consider the subset defined as . The following lemma implies that it is in fact a disjoint union.
Lemma 3.3.
We have: , and
Proof.
Observe that . Hence it is enough to show that (which is obvious) and , .
The latter fact we can prove by induction. For we see that . Assume we know that for any the product is equal to for some . Then for any we have:
where . Thus . ∎
3.1.3. versus
The full description of the correspondences between , , and , , , is given by the following lemma.
Lemma 3.4.
(1) For any , , there exists a such that .
(2) For any the only combination of , where and , such that is given by , , .
(3) For any , , the complete list of the combinations , where and , such that is indexed by the sequences , where
3.1.4. Comparison of the coefficients
The symbols , , are understood in the rest of the proof as just formal variables satisfying the relations and for all . For , , the symbols denotes
Up to a factor (which is a common factor for (2) and (4)), the coefficient of in (2) is equal to . Up to the same factor, the coefficient of is equal to .
Lemma 3.5.
For any , , we have:
(5) 
3.2. Technical lemmas
3.2.1. Proof of Lemma 3.4
The proof is based on several observations. First, observe the left invariance of the identities for :
Lemma 3.6.
We have: implies for any .
Proof.
Direct inspection of signs. ∎
Second, we have uniqueness:
Lemma 3.7.
The equality considered as an equation for has at most one solution.
Proof.
Assume we have two solutions, and , that is, . Applying Lemma 3.6 twice, we obtain: . Hence . ∎
Finally, we can solve this equation:
Lemma 3.8.
For any , we have , where .
Proof.
We prove it by induction on . The base case is trivial. Assume we know it for . Then, for we have:
Since acts only on , it doesn’t affect the second sum and the part of the first sum for . Since it is a cycle, the only terms when and hold simultaneously are the terms with . Hence this total expression is equal to
∎
3.2.2. Proof of Lemma 3.5
First, observe that the basic properties of imply the following identity that we’ll use in the proof (one can prove it by induction on , for instance):
(6) 
Second, observe that Equation (5) is invariant under the left products with any , so it is sufficient to prove it for . We, however, prove a more general statement. Namely, for any we prove that
This can be proved by induction on , with the case being obvious. Assume this statement is proved for . Then for we have (the computation is completely analogous in the cases and , so we perform it only in the first case):
Here the second equality is the induction assumption, and the final equality follows from Equation (6).
4. The principal terms
Recall a reformulation of the formula for proposed in [OkounkovMain, Equation (3.3)]:
(7) 
The idea behind this formula is that the whole expression for can be considered as the regularization of its principal part, which is the first summand on the right hand side of Equation (7), by the terms that are Laplace transforms of distributions supported on the diagonals, see [OkounkovMain, Sections 2.6.3 and 3.1.4].
The formula of Buryak, in the form of Equation (3), can also be represented as the sum of its principal part and the regularizing terms supported on the diagonals. Firstly, we interpret the integrals as Cauchy principal values in order to interchange and in Equation (3). We obtain:
(8) 
Here the expressions under the sign of the integral have poles along the diagonals defined as , . Recall the integrals should be understood as the Cauchy principal value integrals, that is, we exclude the tubular neighborhood of the divisor of poles of the radius , integrate, and take the limit of the resulting expression. Similarly to Okounkov’s formula, they can be decomposed into a principal part without poles and a diagonal part by applying the SokhotskiPlemelj formula.
Lemma 4.1.
Proof.
Fix and consider the corresponding summand on the right hand of Equation (8). We apply the following change of the variables :
With this change of variables we have:
and
Thus, the right hand side of Equation (8) is equal to
(9)  
where in the second line denotes . The diagonal terms are halfresidues arising as a result of translating the contour of the ’s back to , removing the diagonal singularities in the process. An explicit expression for the diagonal terms will be computed in the next section using the SokhotskiPlemelj formula.
Remark 4.2.
Let us note that Equation (9) is similar to the expressions for the point functions obtained by Brézin and Hikami in [BH0704, BH0709].
Since we got a sum over , as in the principal part of the right hand side of Equation (7), it is sufficient to prove for each that the corresponding summands are equal. Without loss of generality we can assume that . Then we have to prove that
(10)  
or, equivalently, if we cancel the common factors and rescale by , we have to prove that
(11) 