Broadband Tuning of Optomechanical Cavities

Broadband Tuning of Optomechanical Cavities

Abstract

We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 W/nm. By choosing a relatively low optical Q resonance (18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.

I Introduction

The control of light using optical microcavities has important applications spanning from quantum aspects of light-matter interaction Groblacher et al. (2009); Vahala et al. (2009); Schliesser et al. (2008); Hansch and Schawlow (1975) to information routing in advanced photonic networks Lee et al. (2009); Rosenberg et al. (2009); Lira et al. (2009); Han-Yong et al. (2008); Biberman et al. (2008); Sherwood-Droz et al. (2008). The key characteristic of these cavities is their resonant response, which occurs only when the wavelength of light is an integer fraction of the cavity’s optical path length. Therefore in order to reconfigure these devices, a method to tune the optical path length is necessary. Electro-optic tuning has been demonstrated using LiNBO Wang et al. (2007); Guarino et al. (2007) however only sub-nm tuning was achieved; thermo-optic Reja et al. (2007); Biberman et al. (2008) or free-carrier injection based Lira et al. (2009); Lee et al. (2009) tuning has also been demonstrated with tens of nm tuning range. These methods however not only are limited to materials with high thermo-optic coefficient or strong free-carrier dispersion, but also require high temperatures ( 400 K) or suffer from free-carrier induced losses Lee et al. (2009); Lira et al. (2009); Reja et al. (2007). Another way to control the cavity length is to manipulate their mechanical degrees of freedom Rosenberg et al. (2009); Wiederhecker et al. (2009); Frank et al. (2010); Takahashi et al. (2008); Yao et al. (2007); Eichenfield et al. (2007); Huang et al. (2008); Riemenschneider et al. (2004); Alegre et al. (2010); Perahia et al. (2010), such manipulation can be achieved using the optical forces provided by photons circulating inside the optical microcavities Rosenberg et al. (2009); Wiederhecker et al. (2009); Eichenfield et al. (2007); Van Thourhout and Roels (2010); Li et al. (2008). For example, it has been recently shown that optical gradient forces can be used to actuate the mechanical motion in these cavities with tuning ranges exceeding 2 nm Rosenberg et al. (2009); Wiederhecker et al. (2009); Van Thourhout and Roels (2010), and also proposed as a tuning method for various waveguide and microcavity parameters Ma and Povinelli (2009); Rakich et al. (2007). Here we demonstrate that the use of optical forces can provide tuning of a microcavity resonance over 30 nm using only 13 mW of laser power. This device power efficiency is 400 W/nm and its tuning range can span the full telecom C or L-band.

Figure 1: Optical force actuated optical microcavity. a. Schematic of the device with a sliced cross-section showing the TE symmetric optical mode profile. b. Optical resonant wavelength (blue curve, left axis) and optomechanical tuning efficiency (red curve, right axis) dependence with the air gap between the rings. The black-dashed line indicates a gap of 170 nm, close to the fabricated cavity. c,d. Scanning electron micrograph of two vertically stacked ring cavites.

Ii Optical forces in double-ring cavities

To achieve a strong per-photon optical gradient force we choose to work with a coupled pair of microring cavities similar to our previous work Wiederhecker et al. (2009). As illustrated in the schematic of Fig. 1a, it consists of two vertically stacked microring cavities. The subwavelength air-gap between the rings allows for strong coupling between the optical modes of the two rings. For air gaps around 170 nm, the optical modes of each ring evanescently couple to each other forming symmetric and anti-symmetric optical super-modes; in Fig. 1a we show the electric field profile of the symmetric one. The coupling induces a splitting in their resonant wavelength which depends exponentially on the gap between the rings, as shown in the blue curve of Fig. 1b for the symmetric optical super-mode. Therefore one can use this gap-dependence of the optical resonances to tune the microcavity’s optical response. According to the simulated curve in Fig. 1b a telecom band tuning of 30 nm can be achieved with a gap change of only 60 nm. In this optical microcavity, the force to drive such a change can be derived from the optical field gradient in the cavity. The optical energy inside the cavity depends on the optical mode resonant frequency ( where is is the number of photons circulating in the cavity and is the cavity mode optical resonant frequency), therefore the cavity’s optical energy also depends on the gap between the two ring resonators; an optical force between these rings should follow using a virtual work approach Rakich et al. (2007); Povinelli et al. (2005). The optical potential energy change inside the cavity () must correspond to the mechanical work realized on the microrings (), therefore the optical force is given by , where is the optomechanical tuning efficiency. This tuning efficiency is shown as the red curve in Fig. 1b. When operating at small gaps (170 nm) the resonant frequency tuning efficiency can be as high as 60 GHz/nm, this corresponds to a 40 fN/photon optical gradient force.

Figure 2: Limit for static tunability of optomechanical cavities. (a) Two simulated mechanical floppy modes and their respective effective masses. (b) Effective mechanical linewidth normalized by the intrinsic mechanical linewidth () as a function of the normalized pump laser frequency detuning (). The blue-detuned pump laser induces gain, which above a certain threshold induces regenerative mechanical oscillations. The dashed-blue line indicates the optical resonance profile whereas the dashed-green line shows the oscillation threshold. (c) Maximum static tuning predicted by Eq. 2 before reaching oscillation threshold versus the loaded optical quality factor. The different lines corresponds to the threshold for the two different mechanical modes shown in part (a). The dashed vertical line indicates the loaded optical of the tested device.

The fabricated microcavity structure is optimized to achieve maximum optical frequency tuning and per-photon optical gradient force. Such optomechanical frequency tuning can be expressed as a function of the optical power in the cavity. When a pump laser excites the symmetric super-mode resonance, the flexible spokes bend in response to the optical gradient force. The gap between the rings reduces and the optical resonant frequency of this mode decreases as shown in Fig. 1b. The cavity optical frequency shift due to mechanical displacement is simply given by , where is the gap change between the rings. These relations can be combined with Hooke’s law (, is the stiffness of the rings in response to the gradient optical forcecom ()) to yield an expression for the cavity frequency shift and the optical power coupled to the cavity,

(1)

where is the intrinsic optical quality, is the optical resonant frequency, and is the power dropped to the cavity resonance with normalized transmission . According to Eq. 1, the optomechanical tuning and the beam stiffness are the two cavity parameters that can be engineered in order to achieve large optical frequency tuning. There are however practical limits to them; to increase , as shown in Fig. 1b, it is necessary to have cavities with small gaps. When the gaps are smaller than 100 nm however, the fabrication yield is considerably smaller since the structures tend to collapse because of the short-range Van der Wals interaction Delrio et al. (2005). This also limits the smallest spring constant that can be practically achieved.

The double-ring optical cavity used here can have optical and mechanical parameters, such as , and that increases the threshold for regenerative mechanical in the cavity Schliesser et al. (2008); Lin et al. (2009); Carmon et al. (2005) and enables large static tuning. When the regenerative oscillation threshold is reached, one or more mechanical modes of the structure will oscillate with a large amplitude leading to a strong modulation of the light transmitted by the cavity. In Fig. 2a we show the mechanical displacement profile of two floppy mechanical modes that will be driven by the optical gradient force. The threshold optical power at which regenerative mechanical oscillations begins will define the maximum static frequency tuning, i.e., an upper limit for the static operation of our device. As we illustrate in Fig. 2b, when the pump laser is blue-detuned with respect to the cavity frequency (), it provides optical gain for the thermally excited mechanical modes and effectively reduces the mechanical damping, narrowing the mechanical resonance linewidth (). At the threshold power , the optomechanical gain exceeds the intrinsic losses of the mechanical modes (, dashed black line in Fig. 2b) and they enter into regenerative oscillations Wiederhecker et al. (2009); Lin et al. (2009); Schliesser et al. (2009, 2008). As a result, any optical signal going through the cavity is strongly modulated at the mechanical frequency of these modes. The floppy mechanical modes shown in Fig. 2a are the first two mechanical modes that are strongly driven by optical field due to their mostly vertical and opposing (or bright) motion of the two rings. The threshold input power to achieve regenerative oscillations for a mechanical mode with effective motional mass , optomechanical coupling rate , and mechanical quality factor is given by , where is the ideality coupling factor for an undercoupled or overcoupled cavity, is the transmission value exactly on resonance, and is the loaded optical quality factor Schliesser et al. (2008); Lin et al. (2009); Schliesser et al. (2009); Spillane et al. (2003); Anetsberger et al. (2008); Pinard et al. (1999). Here we assumed that the cavity is excited close to the optimal cavity frequency detuning (where ) and that the cavity parameters are within the unresolved sideband limit, . At this detuning point, the cavity transmission is given by . Using this transmission value and the power threshold expression above together with Eq. 1, an expression can be derived for the maximum static frequency shift for an optomechanical cavity as limited by optomechanical oscillations of the mechanical mode,

(2)

In the case of the fundamental anti-symmetric (bright) mechanical mode (), this expression does not depend on the optomechanical tuning efficiency since , a high value of however ensures that large tuning can be achieved using low optical powers (see Eq. 1). For double-ring cavities however many mechanical modes will have similar , for example , where (2,3) stands for the second and third order bright mechanical modes, therefore Eq. 2 can still predict the maximum frequency shift as limited by optomechanical oscillations of the higher order mechanical modes. In Fig. 2c we show the maximum wavelength tuning predicted by Eq. 2 for a double-ring cavity with a loaded optical (vertical dashed line), each curve represent the maximum wavelength tuning as limited by regenerative oscillations from the two mechanical modes shown in Fig. 2a. The red and blue lines corresponds to the first and second mechanical modes shown in Fig. 2a with parameters MHz, pg, N/m, and . Since these modes may have distinct mechanical quality factors, we represent in the wide blue and red regions the tuning range spanned when the mechanical quality factor vary between . The overlap of these region show that depending on their mechanical quality factor, the second order mode may reach oscillation threshold before the first mode. These parameters should allow for a maximum static tunability in the few hundred nanometers range as shown in Fig. 2c.

Iii Experimental Results

We demonstrate experimentally optomechanical tuning exceeding 30 nm using only 13 mW of laser power, well below the regenerative oscillations threshold. The fabricated cavity, shown in Fig. 1c,d, has a 30 m diameter and a 3 m wide ring. Each ring is made of 190 nm thick stoichiometric LPCVD (low-pressure chemical vapor deposition) SiN. The details of the fabrication process can be found elsewhere Wiederhecker et al. (2009). The spokes have cross-section dimensions of 190 x 500 nm. The air gap between the rings is about 170 nm. A top view of the device under test is shown in Fig. 3a and the experimental setup schematic is shown in Fig. 3b. A typical low power transmission spectrum obtained using a tapered optical fiber coupled evanescently to the cavity is shown Fig. 3c. The loaded optical quality factor of the pump resonance was whereas the mechanical quality factors was for the mechanical mode at 8.05 MHz, for the first order mode at 646 KHz it was too low and was not measured since it was below the noise level in our direct detection setup. Such low mechanical quality factor is typical in double-ring cavities due to the strong damping caused by gas trapped between the rings Wiederhecker et al. (2009); Lin et al. (2009); Bao and Yang (2007); Rosenberg et al. (2009).

Figure 3: Experimental setup and cold-transmission. (a) Top view optical micrograph of the device showing the tapered optical fiber used to support the device. This is due to change in the interference pattern as the air-gap between the rings changes. (b) Schematic of the experimental setup, PD1,2 denotes the two photodiodes used to record the pump and probe transmission. (c) Low power (100 nW) optical transmission of the cavity highlighting both the probe (1460-1500 nm) and pump (1575-1620 nm) wavelength region.

To induce the optical force we use a 13 mW tunable external cavity pump laser centered on an optical resonance at 1580 nm (highlighted in Fig. 3c), the polarization of the pump is adjusted to maximize its coupling to the cavity TE mode. As the pump laser wavelength scans this resonance (0.5 nm steps) from shorter towards longer wavelengths, more power is dropped to the cavity as the laser approaches the resonance. At each pump wavelength step, we record the probe transmission over the range indicated by the horizontal arrow in Fig. 3c. We summarize our experimental data demonstrating 32 nm optomechanical tuning in Fig. 4. The most dramatic effect of the optomechanical tuning can be seen by simply observing under a microscope the colour change of the light reflected off the top of the cavity. As the air-gap between the rings is reduced, the thin-film interference effect allow us to see in real time such a change. We show this effect in the sequence of images on right-side of Fig. 4a, and also on the attached multimedia file on Fig. 4. A more quantitative evidence is revealed by the pump laser transmission shown in Fig. 4b. The offset curves correspond to different power levels as the laser scans from shorter to longer wavelengths. As the pump power increases (from bottom to top) the optical resonances show the typical triangular shape of a bistable cavity Kippenberg and Vahala (2007); Wiederhecker et al. (2009); Rosenberg et al. (2009). Such bistable transmission curves results from the red-shift induced by the change in the air-gap due to optical forces. At the highest pump power of 13 mW, the bistability extend over 32 nm, which spans twice the optical free spectral range. This indicates that a very large optomechanical shift is induced. The probe transmission curves at each pump wavelength are shown as offset curves in Fig. 4a. Since the pump power actually dropped to the cavity is related to the pump transmission curve and input power as , the minimum pump transmission (around 1617 nm) is =0.4 and therefore the maximum power dropped to the cavity is =7.8 mW. Using Eq. 1 with this power value and a spring constant of =1.44 N/m, as obtained from static finite element simulations com (), we calculate the expected wavelength shift to be =33 nm, in good agreement with the measured value.

As the dropped power in the cavity increases we observe tuning of mechanical resonant frequency (i.e., optical spring effect) as well as a reduction in the mechanical resonance linewidth (i.e., optomechanical amplification). These two effects can be seen in Fig. 4c and 4d where we show a density plot of the transmitted pump RF spectrum measured using a 125 MHz photodetector (PD2 in Fig. 4a). The observed shift in the mechanical resonant frequency, from 8 MHz to 32 MHz, corresponds to a stiffening of the mechanical resonator of . The stiffening of the resonator is so large that the mechanical mode exhibit anti-crossings Lin et al. (2010) with higher frequency modes, two of such anti-crossings at 17 and 31 MHz are highlighted in Fig. 4d. Each of these anti-crossings are actual doublets formed by a symmetric (dark) lower frequency mechanical mode MHz, shown in Fig. 4e,f, and an anti-symmetric (bright) higher frequency mechanical mode MHz, shown in Fig. 4g,h; the mechanical frequencies shown in these figures are obtained from finite element simulations and agree with the measurements within difference. This identification is justified since after the anti-crossing with the dark modes, the mechanical mode preserves its frequency and appears as a straight vertical trace in density plot of Fig. 4d, whereas after the anti-crossing with the bright mode, the mechanical mode keeps increasing its frequency due to the spring effect. The major benefit of this stiffening for static tuning applications is the reduction of thermal driven vibrations, which scales as according to the equipartition of energy Rosenberg et al. (2009); Wiederhecker et al. (2009); Kippenberg and Vahala (2007). The reduction of the mechanical linewidth leads to an increase in the mechanical quality factor, as shown in Fig. 4c which was measured to increase from to . This confirms that our device is indeed well below the optomechanical oscillations threshold.

Figure 4: Optomechanical tuning of double-ring cavity. (a) Measured probe laser transmission for a pump power of 13 mW. The different curves are recorded at distinct pump laser detuning from the cavity resonance, the bottom and top curves are recorder when the pump laser is out of resonance and fully resonant, respectively; the micrographs on the right show the cavity color recorded corresponding to the transmission curves indicated by the arrows. The embedded movie shows the ring color changing as the optical force builds up on the device. (b) Measured optical transmission of the pump laser at increasing power levels. (c) RF spectrum showing the optomechanical amplification of the mechanical resonance, even at maximum amplification (yellow curve) the measured mechanical quality factor is 30. (d) RF spectrum of the transmitted pump laser showing the optical spring effect on the mechanical resonance. The highlighted regions (e,g) show the anti-crossing between the mechanical resonant modes. The false color scale represents the RF power in dBm. (f,g) Simulated bright and dark mechanical modes corresponding to the anti-crossings observed on (e,g).

The optical absorption inside the cavity raises its temperature and also contributes to the measured shift. There is a thermo-optic contribution arising from the refractive index change (, where K for SiN) and a thermo-mechanical contribution due to thermal expansion of the cavity. Although such thermal expansion could also cause a change in the gap between the rings, it has been shown that the major thermo-mechanical shift is caused by radial expansion Rosenberg et al. (2009); Wiederhecker et al. (2009). We verified both numerically and experimentally that these thermal contributions are negligible. Considering both thermal contributions we may write where and , one can estimate the radial expansion of the ring using the relation , where K is the SiN thermal expansion coefficient. To estimate the temperature change we assume an absorption loss of 0.06 dB/cm Gondarenko et al. (2009), which corresponds to an optical absorption quality factor of . The total thermal resistance of the cavity, as calculated through the finite element method Com (), is K/W. Using these parameters, the estimated temperature change in the ring is =23 K, where the heating power is calculated from the intra-cavity energy as Wiederhecker et al. (2009). Using the above relation we calculate the thermal contribution to the frequency shift, the thermal expansion term gives GHz, whereas the thermo-optic effect gives GHz. The total thermal shift is therefore GHz, or equivalently =0.86 nm, which corresponds to 3% of the measured shift. To verify that the thermal contribution is indeed small we tested a device in which the two rings collapsed and were stuck to each other and therefore do not experience the usual optomechanical tuning. Such a small contribution from thermal shift was verified experimentally is in agreement with previous results on double-ring and spider-web cavities where the optomechanical tuning is the dominant effect. Some contribution could also arise from the nonlinear Kerr effect, however due to low finesse of our cavity () and relatively large effective mode area ( m), we estimated the Kerr contribution , where cmW is the nonlinear refractive index of SiN and is the cavity mode group index, to be below 1 pm and therefore negligible in our device.

Iv Conclusions

In conclusion, we show efficient (400 W/nm), broadband (across C &L bands) tuning of optical resonances using gradient force actuation of optical devices. We also show that competing effects such as thermo-optic effect and Kerr effect contribute only to a small extent to the overall optical frequency shift. This optomechanical tuning approach is not only competitive with other known tuning methods, but also advantageous since it simplifies the fabrication process by avoiding metal contacts etc. Static tuning beyond the one achieved here should be possible using such devices, although further optimization of the resonator parameter, such as spokes thickness, inter-ring gap, ring width, and perhaps higher laser powers may be necessary. While we focused on the static effects in this work, using appropriate experimental conditions, high tuning efficiency gradient force optomechanical devices may offer a potential for studying dynamic effects of radiation and near field forces.

Acknowledgements

The authors acknowledge Long Chen and Jaime Cardenas for valuable fabrication help, and also Nicholas Sherwood and George Kakarantzas for their help in building the fiber taper pulling station. We also acknowledge partial support by Cornell University’s Center for Nanoscale Systems. This work was supported in part by the National Science Foundation under grant 00446571. This work was performed in part at the Cornell Nano-Scale Science and Technology Facility (a member of the National Nanofabrication Users Network) which is supported by the National Science Foundation, its users, Cornell University and Industrial users.

References

  1. S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, Nature 460, 724 (2009).
  2. K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, Nature Physics 5, 682 (2009).
  3. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, Nature Physics 4, 415 (2008).
  4. T. Hansch and A. Schawlow, Optics Communications 13 (1975).
  5. B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, Lightwave Technology, Journal of 27, 2900 (2009).
  6. J. Rosenberg, Q. Lin, and O. Painter, Nat Photon 3, 478 (2009).
  7. H. L. R. Lira, S. Manipatruni, and M. Lipson, Optics Express 17, 22271 (2009).
  8. N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, Optical Engineering 47, 044601 (2008).
  9. A. Biberman, N. Sherwood-Droz, B. G. Lee, M. Lipson, and K. Bergman, in IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008. 21st Annual Meeting of the (2008), pp. 370–371.
  10. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, Opt. Express 16, 15915 (2008).
  11. T. J. Wang, C. H. Chu, and C. Y. Lin, Optics Letters 32, 2777 (2007).
  12. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, Nature Photonics 1, 407 (2007).
  13. A. Reja, W. H. Charles, G. Fuwan, I. S. Henry, K. Franz, J. R. Rajeev, and A. P. Milos, in CLEO/QELS (Optical Society of America, 2007), OSA Technical Digest Series (CD), p. CFQ5.
  14. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, Nature 462, 633 (2009).
  15. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, Optics Express 18, 8705 (2010).
  16. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, Optics Express 16, 14421 (2008).
  17. J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, Ieee Journal of Selected Topics in Quantum Electronics 13, 202 (2007).
  18. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, Nat Photon 1, 416 (2007).
  19. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat Photon 2, 180 (2008), URL http://dx.doi.org/10.1038/nphoton.2008.3.
  20. F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, Photonics Technology Letters, IEEE 16, 2212 (2004), ISSN 1041-1135.
  21. T. P. M. Alegre, R. Perahia, and O. Painter, Opt. Express 18, 7872 (2010), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-18-8-7872.
  22. R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, Applied Physics Letters 97, 191112 (pages 3) (2010), URL http://link.aip.org/link/?APL/97/191112/1.
  23. D. Van Thourhout and J. Roels, Nature Photonics 4, 211 (2010).
  24. M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, Nature 456, 480 (2008).
  25. J. Ma and M. L. Povinelli, Opt. Express 17, 17818 (2009), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-20-17818.
  26. P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, Nat Photon 1, 658 (2007), URL http://dx.doi.org/10.1038/nphoton.2007.203.
  27. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, Optics Letters 30, 3042 (2005).
  28. Each ring contributes to half of the total change in the gap between them. the spring constant k is calculated through the static response of the rings to the optical force, a solid-stress finite element analysis was used.
  29. F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, Nature Materials 4, 629 (2005).
  30. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, PRL 103, 103601 (2009).
  31. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, Physical Review Letters 94, 223902 (2005).
  32. A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, Nature Physics 5, 509 (2009).
  33. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
  34. G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, Nature Photonics 2, 627 (2008).
  35. M. Pinard, Y. Hadjar, and A. Heidmann, The European Physical Journal D 7, 10 pages (1999).
  36. M. Bao and H. Yang, Sensors and Actuators A: Physical 136, 3 (2007).
  37. T. Kippenberg and K. Vahala, Optics Express 15, 17172 (2007).
  38. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, Nat Photon 4, 236 (2010), URL http://dx.doi.org/10.1038/nphoton.2010.5.
  39. A. Gondarenko, J. S. Levy, and M. Lipson, Optics Express 17, 11366 (2009).
  40. Comsol multiphysics 3.5a is a finite-element multiphysics simulation tool, Comsol AB.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minumum 40 characters
   
Add comment
Cancel
Loading ...
171274
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description