Binaries among low-mass stars in nearby young moving groups Based on observations collected at the European Southern Observatory, Chile (Programs 096.C-0243 and 097.C-0135).

Binaries among low-mass stars in nearby young moving groups thanks: Based on observations collected at the European Southern Observatory, Chile (Programs 096.C-0243 and 097.C-0135).

Markus Janson Department of Astronomy, Stockholm University, Stockholm, Sweden
   Stephen Durkan Astrophysics Research Center, Queens University Belfast, Belfast, Northern Ireland, UK
   Stefan Hippler Max Planck Institute for Astronomy, Heidelberg, Germany,,,
   Xiaolin Dai Max Planck Institute for Astronomy, Heidelberg, Germany,,,
   Wolfgang Brandner Max Planck Institute for Astronomy, Heidelberg, Germany,,,
   Joshua Schlieder NASA Exoplanet Science Institute, Caltech, Pasadena, California, USA
   Mickaël Bonnefoy Univ. Grenoble Alpes, IPAG, Grenoble, France
   Thomas Henning Max Planck Institute for Astronomy, Heidelberg, Germany,,,
Received —; accepted —
Key Words.:
Binaries: visual – Stars: low-mass – Stars: pre-main sequence
offprints: Markus Janson

The solar galactic neighbourhood contains a number of young co-moving associations of stars (so-called ‘young moving groups’) with ages of 10–150 Myr, which are prime targets for a range of scientific studies, including direct imaging planet searches. The late-type stellar population of such groups still remain in their pre-main sequence phase, and are thus well suited for purposes such as isochronal dating. Close binaries are particularly useful in this regard, since they allow for a model-independent dynamical mass determination. Here we present a dedicated effort to identify new close binaries in nearby young moving groups, through high-resolution imaging with the AstraLux Sur Lucky Imaging camera. We surveyed 181 targets, resulting in the detection of 61 companions or candidates, of which 38 are new discoveries. An interesting example of such a case is 2MASS J00302572-6236015 AB, which is a high-probability member of the Tucana-Horologium moving group, and has an estimated orbital period of less than 10 years. Among the previously known objects is a serendipitous detection of the deuterium burning boundary circumbinary companion 2MASS J01033563-5515561 (AB)b in the -band, thereby extending the spectral coverage for this object down to near-visible wavelengths.

1 Introduction

Young Moving Groups (YMGs) are associations of stars that, in addition to having individual indications of youth, are clustered in phase space and therefore generally assumed to originate from a common birth cluster (e.g. Torres et al., 2000; Zuckerman et al., 2001). Thus, they can be expected to be approximately co-eval, which opens up for a range of scientific opportunities that are otherwise unattainable. For instance, statistical age estimators can be applied to a large number of stars in a YMG in order to average out the scatter and improve the precision of the age, and conversely, if the age of individual stars can be determined with particularly good accuracy, this can feed back to the age estimation of all other stars that are associated with the same YMG. The age is a fundamental parameter for many purposes in stellar science, but one of the main reasons for why it has received particular attention in recent years is its relevance for exoplanet research. Since planets are maximally hot directly after formation and subsequently cool gradually for the rest of their lifetime (or until they reach a thermal equilibrium due to illumination from a parent star), the interpretation of a directly imaged planet depends crucially on understanding its age (e.g. Marois et al., 2008; Lagrange et al., 2010; Kuzuhara et al., 2013). Since YMGs are additionally prime targets for direct imaging surveys due to their youth and proximity (e.g. Chauvin et al., 2010; Biller et al., 2013; Brandt et al., 2014), understanding the ages of YMGs is intimately coupled to the understanding of directly imaged planets.

M-type stars have rather long pre-main sequence lifetimes of 100 Myr (e.g. Baraffe et al., 1998). As a result, when such stars reside in YMGs, they are typically still evolving through the pre-main sequence phase, and thus they can potentially be isochronally dated to a good level of precision. Such isochronal dating can in principle be performed using a versus relationship (e.g. Janson et al., 2007), but the temperature scale of M-dwarfs is highly uncertain and thus a potential cause of systematic error. A more robust analysis can be based on using an versus relationship instead. This has been achieved in a few cases (e.g. Bonnefoy et al., 2009; Köhler et al., 2013; Montet et al., 2015a), but more examples would be highly beneficial for covering more YMGs and more reference cases in each YMG to test for robustness, coevality within YMGs, etc. In previous high-resolution imaging surveys, we have identified a large number of binaries in young systems (Bergfors et al., 2010; Janson et al., 2012a). However, not all of these can be associated to known YMGs, and only a subset of the discovered binaries have orbital periods that are short enough so that robust orbital parameters can be estimated in a reasonably rapid timeframe (Janson et al., 2014a). In order to increase the yield of high-utility binaries, it would be most efficient to target stars that have already been identified as YMG members.

Here, we present the results of a high-resolution imaging survey of low-mass stars that have been identified as probable members of nearby YMGs (Malo et al., 2013, 2014; Kraus et al., 2014), primarily motivated by the reasoning above. In the following, we will first present the selected sample of stars in Sect. 2 and the acquisition and reduction of the imaging data in Sect. 3. We will then discuss the results for the sample at large in Sect. 4.1, pay special attention to the ‘planetary mass’ companion 2MASS J01033563-5515561(AB)b in Sect. 4.2 and note peculiarities of other targets in Sect. 4.3. Finally, we will summarize the results of the survey in Sect. 5.

2 Target sample

Our targets were selected from three catalogues of late-type stars identified as high-probability members of nearby YMGs (Malo et al., 2013, 2014; Kraus et al., 2014) that had not been previously monitored with AstraLux. In principle, six observational parameters are required to exactly relate the of the target to that of various moving groups it could conceivably be associated to, but since late-type stars are faint at visible-light wavelengths, most potential YMG members lack a parallactic distance, and many lack a radial velocity measurement, so a probabilistic estimation must sometimes be made on the basis of only four parameters (right ascension, declination, and proper motion along both these directions). Nonetheless, the Bayesian estimations made in e.g. Malo et al. (2014) using the so-called BANYAN code can often distinguish field objects from moving group members with such a constrained parameter set with quite high probabilities, provided that the priors are trustworthy.

For the purpose of scheduling and executing the observations, we took the membership assignments in the aforementioned catalogues at face value. However, since then, the first Gaia data release has been presented (Brown et al., 2016), including the Tycho-Gaia Astrometric Solution (TGAS, see Michalik et al., 2015). This contains new parallaxes and improved proper motions for 29 of the observed targets. Hence, for these cases we re-evaluated YMG membership using the BANYAN II tool (Gagné et al., 2014) with the updated astrometry from Gaia. In many cases, the Gaia parallactic distance was remarkably close to the kinematic distance prediction yielded by BANYAN when no measured parallax is provided. Some particularly notable cases are mentioned in Sect. 4.3. In this way, we found that the YMG membership hypothesis is supported (and strengthened) with the addition of a Gaia parallax in 17 of the 29 cases. However, in the other 12 cases, membership could not be supported, with the YMG probability going down to effectively 0% in some cases. This relatively high rejection rate should be taken as a caution that the other targets, for which no parallactic distance exists yet, should still be taken only as candidate YMG members, rather than bona fide members. Still, the fact that a majority of the re-assessed cases were verified as YMG members can be seen as an indication that most of the other candidate assignments are probably also correct. In due time, Gaia will provide accurate distances to all of these targets, such that membership can be more rubustly assessed across the board.

The sample properties are listed in Table 1.

3 Observations and Data Reduction

The observations of this survey were taken during three separate runs during the European Southern Observatories (ESO) observing periods P96 (program 096.C-0243) and P97 (program 097.C-0135). Two of the runs were scheduled in P96, with four nights spanning 24–27 Nov 2015 and another four nights spanning 24–27 Dec 2015. Unfortunately, the Nov run suffered from very poor conditions with clouds, strong winds, and poor seeing, so only a few targets could be usefully observed for the survey on the night of Nov 27. The Dec run was considerably better and yielded useful data every night. In P97, the single four-night run was scheduled for 16–19 May 2016. One of these nights, May 17, was very productive and offered a clear sky and good seeing for most of the night, but like in the Nov run, the rest of the time was clouded out.

For all of the observations, we used the AstraLux Sur Lucky Imaging camera (Hippler et al., 2009) mounted at the guest instrument port of the 3.5m New Technology Telescope (NTT) in La Silla. The filter was used, and typically 10000 frames with individual integration times of a few tens of ms were acquired for each target. In total, we observed 181 separate targets during the available clear nights. Nine of these were observed twice, since some of the binary candidates detected in the late 2015 runs were re-observed in the May 2016 run. Generally, a subarray readout of pixels was used since we are primarily interested in close binaries, but in the case of wide binaries, where both components may be interesting or where it was not immediately obvious to the observer which star was the actual target, the full detector was read out in order to maintain both components firmly within the field of view. The field of view for the full frame is approximately .

Data reduction was done in an identical way to our previous AstraLux surveys (e.g. Janson et al., 2012a, 2014a). The reduction pipeline (Hormuth et al., 2008) produces several Lucky Imaging outputs with different levels of selection (e.g. all frames used, the 10% best seeing frames used, the 1% best seeing frames used etc). For our purposes, we consistently chose a 10% selection for further analysis as it provides a good trade-off between resolution and sensitivity. The final pixel scale as well as the True North orientation were determined individually for the different runs by observing clusters that have been previously observed with the Hubble Space Telescope (HST) for astrometric reference. For the Nov 2015 and Dec 2015 runs, we used Trapezium for this purpose with HST coordinates from McCaughrean et al. (1994), and for the May 2016 run, we used M15 with HST coordinates from van der Marel et al. (2002). In this way, we found pixel scales of 15.19 mas/pixel for the Nov 2015 run, 15.20 mas/pixel for the Dec 2015 run, and 15.27 mas/pixel for the May 2016 run. Likewise, we derived True North orientations of 2.17 deg for Nov 2015, 2.40 deg for Dec 2015, and 3.04 deg for May 2016. The calibration uncertainties range 0.06–0.13 mas/pixel in pixel scale and 0.16–0.30 deg in True North orientation.

From the output images, relative astrometry and photometry was derived for any pair of stars that could be identified in the images. This was again done as in our previous studies, with aperture photometry and Gaussian centroiding in the case of wide separation pairs, and Point Spread Function (PSF) fitting for close separation pairs, where the PSFs of single stars were used as references. Triple systems consisting of a close pair and a third wide component need special attention in this regard. We handled these by choosing an aperture large enough to encompass both components of the close pair, thus acquiring an AB–C (or A–BC) relative photometry. The relative photometry of the close pair was then determined through PSF fitting as usual, and from this the relative photometry between the brighter component of the pair and the wider component could be derived. Near-equal brightness pairs are subject to the so-called ‘false triple’ effect (Law, 2006), in which the pair of components map onto three apparent PSFs in the final image, also require special attention. In the context of astrometry, there is a 180 deg ambiguity in the position angle of such cases, since it cannot be uniquely determined which is which of the two binary components (this is an issue for nearly equal-brightness components even in the absence of a false triple effect). In the context of photometry, we have shown in previous papers (Janson et al., 2012a, 2014b) that the photometric determinations on false triple pairs are biased, hence for this study, we simply omit a relative photometric analysis of such systems.

4 Results and discussion

4.1 Multiplicity in the sample

Among our sample of 181 targets, we detect 61 candidate companions, of which 23 have been previously reported in the Washington Double Star catalogue (Mason et al., 2001) and other sources cited individually in this article. The other 38 are, to our knowledge, new detections. An example of the new detections, the triple system J17243644-3152484, is shown in Fig. 1.

Figure 1: Image of the J17243644-3152484 triple system, resolved by AstraLux for the first time. The YMG classification of this system is unclear, as discussed in Sect. 4.3.

The astrometric properties of the multiple systems are summarized in Table 2. Of the 23 companions that have been previously observed, each one could be confirmed to share a common proper motion (CPM) with the primary. This is consistent with our experience from previous surveys (e.g. Janson et al., 2012a), that the contamination frequency is low for typical targets (i.e., targets that are not very close to the galactic plane). While we do have second epoch observations for nine companions of which eight are new, the proper motions for several of them are too small to be statistically significantly measurable over a 5 month baseline. J12092998-7505400 AB could nonetheless be confirmed as CPM with 10 confidence. While not yet formally noted as CPM in the table, J07343426-2401353 AB and J07523324-6436308 BC could be seen as marginally confirmed CPM at 3–4. For the targets that neither have literature epochs nor could be confirmed as CPM, we made an additional test by checking digital sky surveys for historical epochs for the targets. This is similar to the checks performed in Janson et al. (2014b), as well as in other recent surveys (e.g. Montet et al., 2015b; Schlieder et al., 2016). The best source for such checks is typically the Palomar Observatory Sky Survey (POSS), which includes images covering a large fraction of the sky from epochs around 1950, thus providing a sufficient baseline for targets with proper motions of 100 mas/yr to move by several arcseconds on the sky, which is usually more than the seeing-limited resolution of the images. Thus, background contaminants in the AstraLux image may be separated from the primary in such archival images for sufficiently fast-moving targets. Unfortunately, most of our targets are too far south to be included in POSS. In these cases, the best option is typically the so-called SERC survey from the UK Schmidt telescope, which has first epoch data from typically the late 1970s or early 1980s. Furthermore, some of our targets with candidate companions have a quite slow proper motion, down to 11 mas/yr in the slowest case. In order to be able to draw confident conclusions, we set the threshold that 3 of motion must have occurred between the archival epoch and the AstraLux data for the archival epoch to be useful. This leaves 15 targets that can be usefully checked. Of these, there are 10 cases in which no candidate background star can be seen in the archival image. This strongly implies that the respective candidates are physical companions. In this context it should still be considered that the filters of the two epochs are quite different; the archival epochs are at shorter wavelengths than the AstraLux data. Hence, a hypothetical very red background source may escape detection in the archival data, in which case it would be erroneous to label the candidate as CPM. We consider that a positive detection is needed for a final confirmation of CPM, and thus we label these candidates as ‘implied CPM’ rather than fully confirmed CPM. This is marked with the label ‘I’ in Table 2. In the remaining five cases, the separation between the primary and candidate was large enough that that they could be recognized as partially resolved in the archival images, such that a real CPM test could be performed. In this way, we could confirm three additional CPM companions (J00302572-6236015 C, J18450097-1409053 B, and J23204705-6723209 B), and two background contaminants (J00514081-5913320 B and J23332198-1240072 B). The relatively large rejection fraction is due to the fact that these are the widest among the candidates, which is where the contaminants are expected to reside. Of the candidates that remain unverified, we expect that three (J05111098-4903597 B and J16572029-5343316 B and C) are possible/probable background contaminants, but the rest are very close and/or very bright relative to the primary, hence they are all probable companions. Obviously, common proper motion tests over a longer timescale will be required to verify this beyond reasonable doubt in the individual cases.

Photometry and derived quantities are shown in Table 3. The relative photometry was used to estimate individual masses using theoretical mass-luminosity relationships for young stars. Each target system was assigned an age based on their YMG membership assignment as shown in Table 1. The ages for the AB Dor (ABMG, 150 Myr),  Pic (bPMG, 25 Myr), Carina (CAR, 45 Myr), Columba (COL, 40 Myr), Tucana-Horologium (THA, 45 Myr) and TW Hya (TWA, 10 Myr) YMGs were adopted from Bell et al. (2015). Argus is considered a questionable association by Bell et al. (2015), but is used in the BANYAN framework, so we assign it an age of 40 Myr following Torres et al. (2008). For a given star with a given age, we adopt the evolutionary models of Baraffe et al. (2015) to make predictions of the masses from the measured brightnesses. The combination of masses for the two components of a binary pair that minimizes the RMS residuals of the from our data and the total -band magnitude from 2MASS (Skrutskie et al., 2006) is adopted for this purpose. The total mass of the binary in combination with an estimated semi-major axis can then in turn be used to make a tentative prediction for the orbital period of the pair, since . An estimation for the semi-major axis can be acquired simply by considering that for sensible eccentricity distributions, the ratio between average projected separation and semi-major axis of a binary population is close to unity (Brandeker et al., 2006; Bonavita et al., 2016). In other words, the expectation value for the semi-major axis of a binary with no additional information about its orbit is approximately equal to its instantaneous projected separation. The period estimations resulting from this analysis are shown in Table 3. These estimations are subject to large uncertainties, for a range of reasons such as systematic uncertainties in the models and ages, as well as the broad scatter in the translation between projected separation and semi-major axis. However, prior to measuring the actual orbits, this is the best that can be done with the data at hand, so it is a useful procedure for determining which systems are the most promising to follow up with a relatively high cadence for an orbital determination within a realistic timescale. Indeed, identifying such systems is the primary purpose of this study.

As mentioned previously, the false triple binaries are unsuitable for relative photometry and thus not included in Table 3, but it is still of interest to acquire approximate period estimations. For this purpose, we apply a simplified procedure of assuming that the components are approximately equal brightness, and estimate the mass based on total -band magnitude alone. Through this procedure, we acquire estimations of 8 yr for J00302572-6236015 AB, 43 yr for J01033563-5515561 AB, 9 yr for J02303239-4342232 AB, 295 yr for J04475779-5035200 AB, 111 yr for J12092998-7505400 AB, 89 yr for J17130733-8552105 AB, 39 yr for J20223306-2927499 AB, and 91 yr for J21342935-1840372 AB. In total among the pairs studied in this survey, this means that 9 pairs have an estimated orbital period 40 years, which we deem as the relevant cut-off timescale for sufficiently rapid orbits to motivate regular astrometric monitoring. We particularly note the two pairs J00302572-6236015 AB and J02303239-4342232 AB, which both have very rapid estimated orbital timescales of 10 years. J00302572-6236015 is identified as a THA member in Kraus et al. (2014), and a BANYAN II check supports this at a very high level of probability (99.7% THA member with standard priors), though a parallactic distance is still required for it to formally be regarded as a bona fide member. J02303239-4342232 has been extensively studied in a YMG context (e.g. Torres et al., 2008; Schlieder et al., 2010); in this study our baseline YMG assumption was based on the COL classification in Malo et al. (2014). Since then, a parallax has become available in TGAS which we could use to verify this membership in a BANYAN II analysis. We find that with standard priors, the probability of COL membership is 82.6%, with a small alternative probability of 15.2% that it is a member of THA instead. The probability of it being a field contaminant is only 1.9%. In other words, it is very likely to be a genuine YMG member. We therefore consider J00302572-6236015 AB and J02303239-4342232 AB to be the very top priorities for astrometric follow-up out of the 61 examined in this work.

4.2 The case of 2M0103

An interesting ancillary outcome of our survey was the re-detection of J01033563-5515561(AB)b (system identifier hereafter abbreviated as 2M0103) originally reported in Delorme et al. (2013). Our image, which is displayed with a high stretch and has been smoothed with a Gaussian kernel of 20 pixel (304 mas) FWHM, can be seen in Fig. 2. 2M0103(AB)b was estimated in Delorme et al. (2013) to be a 12–14  object at a relatively wide orbit (84 AU projected separation) around a close low-mass stellar binary pair. It can therefore in some sense be regarded as a possible circumbinary planet, although it seems unlikely that it would have formed through standard planet formation mechanisms, at least at its present location. The targets of our survey were selected solely on the basis of probable late-type YMG members that had not previously been observed by AstraLux, hence the inclusion of this target in the survey was entirely coincidental. Only after we had discovered the point source in the AstraLux images, and a detailed literature search was made for 2M0103, was the history of the system realized.

Figure 2: AstraLux image of the 2M0103 system. Smoothing with a Gaussian kernel has been applied to better show the faint very low-mass companion first reported in Delorme et al. (2013).

Special considerations are required to constrain the properties of 2M0103(AB)b, because the conditions were non-optimal during the observation and the companion is faint and embedded in the PSF halo of the central binary, and also because the central binary exhibits a false triple effect, further complicating matters. We estimate relative photometry by using 15 pixel circular apertures around the primary pair and around the faint companion. The contribution of the PSF halo of the primary pair was estimated by taking the mean of the aperture flux at four different locations at the same separation from the pair as the companion. The points chosen for this purpose were due North, South, and West from the primary pair, as well as the point directly opposite to the companion’s location. The Eastward direction was omitted for this purpose, since the PSF halo has a coma-like extension in that direction. In this way, we found that the AB–b contrast is  mag. This is the only photometric quantity that it directly measurable in the data due to the false triple effect of the primary, but if we assume that the A and B components have approximately equal brightness, which holds true at longer wavelengths (Delorme et al., 2013), then the A–b contrast can be expected to be 5.7 mag.

For relative astrometry, we simply estimate the locations of the companion and the primary pair barycenter by eye, adopting a 1 pixel uncertainty. This gives a separation of arcsec and a position angle of deg. As can be seen in Fig. 3, the position in our Dec 2015 image is consistent with that in the Nov 2012 image of Delorme et al. (2013), and also confirms that orbital motion has occurred since their Oct 2002 epoch. Given the long baseline and relatively high proper motion of 2M0103, CPM is thoroughly obvious.

Figure 3: Separation (left) and position angle (right) of 2M0103(AB)b relative to the AB barycenter as function of time. Triangles are data points from Delorme et al. (2013) and the square in each panel is the astrometry from our AstraLux image. Red lines correspond to the motion that 2M0103(AB)b would exhibit if it were a static background star, which can be firmly excluded. There is also significant orbital motion between the first epoch in 2002 and the later epochs.

While a detailed analysis of the physical properties of 2M0103(AB)b is beyond the scope of this paper, it is interesting to assess whether the observational properties that we derive are consistent with the conclusions about the object properties in Delorme et al. (2013). In particular, we may ask whether our photometry is consistent with the 12–14  mass derived there. To test this, we first take the system age of 30 Myr adopted by Delorme et al. (2013) at face value, and use the BT-SETTL models (Baraffe et al., 2015) for an isochronal mass-brightness conversion. Given a primary mass of 0.2 , the models predict  mag, and with an A–b contrast of 5.7 mag, this gives  mag, which in turn gives a mass prediction of 13–14  from linear interpolation of public BT-SETTL grids. This is fully consistent with the previous value derived for the system. Hence, the data give a consistent picture of a companion spectral energy distribution (SED) for a 2000 K object, which at an age of 30 Myr corresponds to a mass in the range of the deuterium burning limit. However, a special note needs to be made about the age. The age assignment is based on THA membership in Delorme et al. (2013), so as a first check it is useful to test if we can support this conclusion. Our input sample classification for 2M0103 is THA, based on Kraus et al. (2014). We have re-assessed this membership using the BANYAN II tool, which supports this classification at a very high probability of 99.95%, so the membership indeed seems to be very robust. A remaining issue, then, is what age THA actually has. The 30 Myr adopted in Delorme et al. (2013) comes from Torres et al. (2008), but in this paper we have used the Bell et al. (2015) ages, which for THA gives a somewhat older age range of 40–50 Myr. This corresponds to a BT-SETTL-predicted mass range of 15–20 . Thus, we conclude that our data imply an SED consistent with the longer-wavelength data of Delorme et al. (2013), and that our analysis supports the classification of the system as a THA member, but we note that uncertainties in the specific age of THA broadens our error bars in mass relative to the discovery paper.

It is rather rare for such a planet-like object to be detected at such a short wavelength range as in -band. Fomalhaut b has been detected at yet shorter wavelengths (Kalas et al., 2008), but its observed flux does not arise from a photosphere (e.g. Janson et al., 2012b). H emission related to accreting planets may have been observed in the LkCa 15 system (Sallum et al., 2015), but it remains unclear if the planets themselves have been imaged (Kraus & Ireland, 2012; Thalmann et al., 2016). It is all the more unusual considering the rather modest size of the 3.5m NTT. While the use of Lucky Imaging with AstraLux was very useful in recovering this object, its detection is arguably less a question of instrumental capabilities than a question of target properties. It is the rare combination of proximity and youth that causes such a low-mass object as 2M0103(AB)b to be hot and luminous enough that it emits a non-negligible amount of radiation shortward of 1 m. This underlines that studies of young moving groups with even modestly resource demanding instrument such as AstraLux have the potential for yielding very low-mass discoveries. In this context, it also emphasizes the importance of following up the candidate companions yielded by the survey over longer timescales to test for CPM. While the faintest candidates in our survey are by far the most likely to be background contaminants, they are also potentially the most interesting individual objects provided by the survey.

4.3 Individual target notes

In this section, we make brief notes about a few targets that deserve or require particular attention.

J02303239-4342232: This system was already discussed in Sect. 4.1 due to the short estimated orbit of the AB pair. Here we additionally point out that there is a wide common proper motion companion at a separation of 173 (Alonso-Floriano et al., 2015). Hence, the system is at least triple.

J02442137+1057411: The YMG membership of this star was classified as ambiguous in Malo et al. (2013), but since we observe it as being multiple, it is preferable with a more specific designation if that can be determined, for the age input to the mass estimation of the binary components. Hence, we used the BANYAN II tool to see if some clearer YMG preference could be derived. In this analysis, J02442137+1057411 was assigned a 93.4% probability of being a member of the  Pic moving group with the standard prior. We thus consider it as a bPMG member here.

J05015881+0958587: In addition to the wide component seen in the AstraLux images, which was originally reported in Henry et al. (1997) and confirmed in Delfosse et al. (1999), the primary in the system also has a spectroscopic binary companion (Delfosse et al., 1999). With a period of only 12 days, the spectroscopic pair is however significantly too close to be resolved in our images.

J05064991-2135091: Two of the three components of this system have individual 2MASS identifiers: J05064991-2135091 and J05064946-2135038. The latter has a close companion which is the third component of the system. We used the full AstraLux frame instead of subarray readout for this target, such that both wide components could be included.

J06153953-8433115: YMG membership of J06153953-8433115 is labelled as ‘ambiguous’ in Malo et al. (2013), but since we resolve it as a binary, it is desirable to attain a more detailed view of YMG membership for age and mass assignment purposes. This turns out to be a complicated issue for this target – BANYAN II gives only a 38.8% probability of bPMG membership versus 59.9% for the field with the standard priors. However, if we chose the priors to constrain the age to be 1 Gyr, the probability for bPMG membership goes up to 65.9%. The latter choice is arguably appropriate, since the star is part of the Riaz et al. (2006) sample which is indeed expected to be 1 Gyr. Hence, we adopt the bPMG age for this target, although we note that the evidence for such a membership is weak relative to most other targets in the survey.

J11211723-3446454: The two components of this system have individual 2MASS identifiers, J11211723-3446454 and J11211745-3446497. The full-frame field of view of AstraLux Sur was used to fit both components in simultaneously.

J14142141-1521215: In addition to the three components visible in the AstraLux field of view, there is a wide common proper motion companion at 65 reported in e.g. Alonso-Floriano et al. (2015), with identifier 2MASS J14141700-1521125. This wide object happens to be part of the CASTOFFS survey (Schlieder et al., 2012, 2015, and Schlieder et al., in prep.) and thus has FEROS spectroscopy dedicated to it. The spectrum shows signs of high activity, with nearly all of the Balmer series in emission, and very broad lines ( km/s). This lends further support to the kinematic indication that the system is young. Exactly how young remains a factor of uncertainty – the classification of J14142141-1521215 in Malo et al. (2013) is for the  Pic moving group, but J14141700-1521125 fits better to the AB Dor YMG.

J15244849-4929473: J15244849-4929473 is single in the AstraLux field of view, but is noted as a single-line spectroscopic binary in Malo et al. (2014). Since no constraints are given on the orbital period, it cannot be assessed whether the unseen companion might become visible to AstraLux during some phase of its orbit.

J17165072-3007104: While this star was identified as a possible ambiguous YMG member in (Malo et al., 2013), our re-analysis with BANYAN II implies that this is a young field star with essentially no chance of being part of any of the identified YMGs, for any sensible choice of priors. For mass estimations of this resolved binary, we thus arbitrarily chose an age of 150 Myr, which is the upper end of the YMG ages used in this study.

J17243644-3152484: This is essentially an identical case as for J17165072-3007104 discussed above: Our BANYAN II re-analysis implies that this star is consistent with a young field star, but not possible to associate directly with any of the known young moving groups. As for J17165072-3007104, we use a tentative age of 150 Myr.

J18141047-3247344: Also known as V4046 Sgr, J18141047-3247344 is a double-lined spectroscopic binary with a period of 2.4 days (Quast et al., 2000). Furthermore, several studies (Kastner et al., 2011; Alonso-Floriano et al., 2015) have noted that it shares a common proper motion with J18142207-3246100, which is individually observed as a separate target in our survey. The separation between the two components is 169. Neither of these are however in the detectability range of AstraLux, in which no further companions are identified.

J19560294-3207186: The two stars J19560438-3207376 and J19560294-3207186, which were separately observed with AstraLux, form a wide binary pair with a separation of 26. As already noted in Bowler et al. (2015), J19560294-3207186 is itself a close pair, which we confirm in this survey. Furthermore, J19560294-3207186 is noted as a double-lined spectroscopic binary in Elliott et al. (2016), implying that there could be a third component in this close sub-system, and thus a component of a quadruple system in total. The system is part of the CASTOFFS survey, in which the spectroscopy in fact shows three distinct lines in both absorption as well as in emission (H and Ca II H) for J19560294-3207186, supporting the quadruple nature of the system.

5 Summary and Conclusions

In this paper, we have presented high-resolution imaging observations of 181 late-type candidate members of nearby YMGs, with the purpose of identifying new binaries that can potentially be used for a range of calibration and age determination purposes. We discovered 61 candidate companions, of which 23 were previously known and the other 38 are new detections. Of the previously known companions, the most notable object is 2M0103(AB)b, which was reported as a 12–14  wide companion to a close pair of M-dwarfs (Delorme et al., 2013). Our analysis of the photometry acquired in this work supports the general conclusions in Delorme et al. (2013), but we note that the upper mass limit needs to be extended up to 20  when accounting for the full possible age range of the Tuc-Hor association quoted in the recent literature (Torres et al., 2008; Bell et al., 2015). Of the companions in total, 9 have estimated orbital periods less than 40 years, and are thus important targets for astrometric follow-ups to constrain their orbital motions.

We also used Gaia data from the recent TGAS release to re-analyze YMG membership for those targets that have new parallactic distances which weren’t available in the original classifications of the targets. We find that in the majority of cases (17 of 29), the YMG could be confirmed with the new information. Still, in a significant fraction of cases (12 of 29), YMG membership was rejected with the new information. Hence, any individual YMG candidate member without a parallactic distance should be treated with a certain degree of caution. Over the next few years, Gaia will provide distances for all of the targets studied here, thus firmly identifying which systems are bona fide members and which are not. It is also likely to yield more YMG members that had previously been missed, and perhaps new nearby YMGs altogether. Finally, while the closest binaries resolved here will be too close to resolve with the much smaller Gaia, absolute astrometry of the unresolved system can still yield valuable constraints of the orbits when combined with resolved imaging from the ground.

M.J. gratefully acknowledges funding from the Knut and Alice Wallenberg Foundation. S.D. acknowledges support from the Northern Ireland Department of Education and Learning. The authors thank the ESO staff for their efficient support, S. Ciceri for transatlantic data transportation, and the anonymous referee for useful suggestions. This study made use of the CDS services SIMBAD and VizieR, the SAO/NASA ADS service, data from the ESA mission Gaia, and digitized archival data from the Anglo-Australian Observatory.


  • Alonso-Floriano et al. (2015) Alonso-Floriano, F.J., Caballero, J., Cortes-Contreras, M., Solano, E., & Montes, D. 2015, A&A 583, 85
  • Baraffe et al. (1998) Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P.H. 1998, A&A 337, 403
  • Baraffe et al. (2015) Baraffe, I., Homeier, D., Allard, F., Chabrier, G. 2015, A&A 577, 42
  • Bell et al. (2015) Bell, C.P.M., Mamajek, E.E., & Naylor, T. 2015, MNRAS 454, 593
  • Bergfors et al. (2010) Bergfors, C., Brandner, W., Janson, M., et al. 2010, A&A 520, 54
  • Biller et al. (2013) Biller, B.A., Liu, M.C., Wahhaj, Z., et al. 2013, ApJ 777, 160
  • Bonavita et al. (2016) Bonavita, M., Desidera, S., Thalmann, C., Janson, M., Vigan, A., Chauvin, G., & Lannier, J. 2016, A&A 593, 38
  • Bonnefoy et al. (2009) Bonnefoy, M., Chauvin, G., Dumas, C., et al. 2009, A&A 506, 799
  • Bowler et al. (2015) Bowler, B., Liu, M.C., Shkolnik, E.L., & Tamura, M. 2015, ApJS 216, 7
  • Brandeker et al. (2006) Brandeker, A., Jayawardhana, R., Khavari, P., Haisch, K.E., & Mardones, D. 2006, ApJ 652, 1572
  • Brandt et al. (2014) Brandt, T.D., Kuzuhara, M., McElwain, M.W., et al. 2014, ApJ 786, 1
  • Brown et al. (2016) Brown, A.G.A., Vallenari, A., Prusti, T., et al. 2016, A&A special GAIA volume
  • Chauvin et al. (2010) Chauvin, G., Lagrange, A.-M., Bonavita, M. et al. 2010, A&A 509, 52
  • Delfosse et al. (1999) Delfosse, X., Forveille, T., Udry, S., Beuzit, J.-L., Mayor, M., & Perrier, C. 1999, A&A 350, L39
  • Delorme et al. (2013) Delorme, P., Gagné, J., Girard, J.H. et al. 2013, A&A 553, L5
  • Elliott et al. (2015) Elliott, P., Huélamo, N., Bouy, H., et al. 2015, A&A 580, 88
  • Elliott et al. (2016) Elliott, P., Bayo, A., Melo, C.H.F., Torres, C.A.O., Sterzik, M.F., Quast, G.R., Montes, D. & Brahm, R. 2016, A&A 590, 13
  • Gagné et al. (2014) Gagné, J., Lafrenière, D., Doyon, R., Malo, L., & Artigau, É. 2014, ApJ 783, 121
  • Gagné et al. (2015) Gagné, J., Lafrenière, D., Doyon, R., Malo, L., & Artigau, É. 2015, ApJ 798, 73
  • Henry et al. (1997) Henry, T.J., Ianna, P.A., Kirkpatrick, J.D., & Jahreiss, H. 1997, AJ 114, 388
  • Hippler et al. (2009) Hippler, S., Bergfors, C., Brandner, W., et al. 2009, The Messenger 137, 14
  • Hormuth et al. (2008) Hormuth, F., Hippler, S., Brandner, W., Wagner, K., & Henning, T. 2008, SPIE 7104, 138
  • Janson et al. (2007) Janson, M., Brandner, W., Lenzen, R., Close, L., Nielsen, E., Hartung, M., Henning, T., Bouy, H. 2007, A&A 462, 615
  • Janson et al. (2012a) Janson, M., Hormuth, F., Bergfors, C., et al. 2012, ApJ 754, 44
  • Janson et al. (2012b) Janson, M., Carson, J.C., Lafrenière, D., Spiegel, D.S., Bent, J.R., & Wong, P. 2012, ApJ 747, 116
  • Janson et al. (2014a) Janson, M., Bergfors, C., Brandner, W., et al. 2014, ApJS 214, 17
  • Janson et al. (2014b) Janson, M., Bergfors, C., Brandner, W., et al. 2014, ApJ 789, 102
  • Jayawardhana & Brandeker (2001) Jayawardhana, R. & Brandeker, A. 2001, ApJ 561, L111
  • Kalas et al. (2008) Kalas, P., Graham, J.R., Chiang, E. et al. 2008, Science 322, 1345
  • Kastner et al. (2011) Kastner, J.H., Sacco, G.G., Montez, R. et al. 2011, ApJ 740, L17
  • Kraus & Ireland (2012) Kraus, A.L. & Ireland, M. 2012, ApJ 745, 5
  • Kraus et al. (2014) Kraus, A.L., Shkolnik, E.L., Allers, K.N., & Liu, M.C. 2014, AJ 147, 146
  • Köhler et al. (2013) Köhler, R., Ratzka, T., Petr-Gotzens, M.G., & Correia, S. 2013, A&A 558, 80
  • Kuzuhara et al. (2013) Kuzuhara, M., Tamura, M., Kudo, M. et al. 2013, ApJ 774, 11
  • Lagrange et al. (2010) Lagrange, A.-M., Bonnefoy, M., Chauvin, G. et al. 2010, Science, 329, 57
  • Law (2006) Law, N.M. 2006, Ph.D. thesis, Institute of Astronomy & Selwyn College, Cambridge University
  • Malo et al. (2013) Malo, L., Doyon, R., Lafrenière, D., Artigau, E., Gagné, J., Baron, F., & Riedel, A. 2013, ApJ 762, 88
  • Malo et al. (2014) Malo, L., Artigau, E., Doyon, R., Lafrenière, D., Albert, L., & Gagné, J. 2014, ApJ 788, 81
  • Marois et al. (2008) Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafrenière, D., & Doyon, R 2008, Science, 322, 1348
  • Mason et al. (2001) Mason, B.D., Wycoff, G.L., Hartkopf, W.I., Douglass, G.G., & Worley, C.E. 2001, AJ 122, 3466
  • McCaughrean et al. (1994) McCaughrean, M.J. & Stauffer, J.R. 1994, AJ 108, 1382
  • Michalik et al. (2015) Michalik, D., Lindegren, L., & Hobbs, D. 2015, A&A 574, 115
  • Montet et al. (2015a) Montet, B.T., Bowler, B.P., Shkolnik, E.L., et al. 2015, ApJ 813, L11
  • Montet et al. (2015b) Montet, B.T., Morton, T.D., Foreman-Mackey, D., et al. 2015, ApJ 809, 25
  • Perryman et al. (1997) Perryman, M.A.C., Lindegren, L., Kovalevsky, J. et al. 1997, A&A 323, 49
  • Quast et al. (2000) Quast, G.R., Torres, C.A.O., de la Reza, R. et al. 2000, The Formation of Binary Stars, ed. B. Reipurth & H. Zinnecker, IAU Symp. 200, 28
  • Riaz et al. (2006) Riaz, B., Gizis, J., & Harvin, J. 2006, AJ 132, 866
  • Sallum et al. (2015) Sallum, S., Follette, K., Eisner, J.A. et al. 2015, Nature 527, 342
  • Schlieder et al. (2010) Schlieder, J.E., Lépine, S., & Michal, S. 2010, AJ 140, 119
  • Schlieder et al. (2012) Schlieder, J.E., Lépine, S., & Michal, S. 2012, AJ 143, 80
  • Schlieder et al. (2015) Schlieder, J.E., Herbst, T.M., Bonnefoy, M. et al. 2015, in 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ed. G. van Belle & H.C. Harris, 919
  • Schlieder et al. (2016) Schlieder, J.E., Crossfield, I., Petigura, E. et al. 2016, ApJ 818, 87
  • Skrutskie et al. (2006) Skrutskie, M.F., Cutri, R.M., Stiening, R. et al. 2006, AJ 131, 1163
  • Thalmann et al. (2016) Thalmann, C., Janson, M., Garufi, A. et al. 2016, ApJ 828, L17
  • Torres et al. (2000) Torres, C.A.O., da Silva, L., Quast, G.R., de la Reza, R., & Jilinski, E. 2000, AJ 120, 1410
  • Torres et al. (2008) Torres, C.A.O., da Silva, L., Melo, C.H.F., & Sterzik, M.F. 2008, in Handbook of Star Forming Regions, Vol. II, 757
  • van der Marel et al. (2002) van der Marel, R.P., Gerssen, J., Guhathakurta, P., Peterson, R.C., & Gebhardt, K. 2002, AJ 124, 3255
  • Zuckerman et al. (2001) Zuckerman, B., Song, I., Bessell, M.S. & Webb, R.A. 2001, ApJ 562, L87
2MASS ID SpT Assoc. Ref RA Dec Method Mult
(mag) (mas/yr) (mas/yr) (pc)
J00125703-7952073 M3.4 THA K14 9.7 80.9 -46.1 48 Kin 1
J00144767-6003477 M3.5 THA K14 9.7 91.3 -63.1 42 Kin 1
J00152752-6414545 M1.5 THA K14 9.3 80.2 -49.9 50 Kin 1
J00172353-6645124 M2.5 bPMG M14 8.56 104.3 -13.5 39 Plx 1
J00235732-5531435 M4.0 THA K14 11.1 91.9 -66.9 42 Kin 1
J00273330-6157169 M3.5 THA K14 10.3 87.5 -56.8 44 Kin 1
J00275023-3233060 M3.5 bPMG M14 8.88 97.8 -60.9 32.3 Plx 1
J00302572-6236015 K7.9 THA K14 8.4 95.5 -48.4 44 Kin 3
J00332438-5116433 M2.4 THA K14 9.9 94.7 -59.9 42 Kin 1
J00340843+2523498 K7 ABMG M14 8.48 83.4 -98.2 49 Kin 2
J00393579-3816584 M1.8 THA K14 8.8 100.2 -65.5 40 Kin 1
J00421010-5444431 M3.0 THA K14 9.8 89.4 -47.9 46 Kin 1
J00485254-6526330 M3.2 THA K14 10.4 82.3 -40.7 50 Kin 1
J00514081-5913320 M4.1 THA K14 11.3 98.0 -50.3 42 Kin 2
J01024375-6235344 M3.8 THA K14 9.6 89.0 -39.6 46 Kin 2
J01033563-5515561 M5.1 THA K14 10.2 100.3 -46.9 47.2 Plx 3
J01134031-5939346 M4.0 THA K14 10.0 96.0 -35.4 44 Kin 1
J01211297-6117281 M4.1 THA K14 11.3 80.7 -28.3 52 Kin 1
J01220441-3337036 K7 THA GBII 8.31 110.1 -57.3 38.5 Plx 1
J01233280-4113110 M5.6 THA K14 10.8 109.3 -54.8 38 Kin 1
J01275875-6032243 M4.0 THA K14 11.1 88.4 -30.8 48 Kin 1
J01283025-4921094 M4.0 THA K14 10.6 101.4 -41.7 42 Kin 1
J01372322+2657119 K5 GBII M14 8.43 118.0 -128.0 37.6 Plx 1
J01372781-4558261 M5.4 THA K14 11.1 116.0 -37.1 38 Kin 2
J01375879-5645447 M3.8 THA K14 10.4 92.5 -32.8 46 Kin 1
J01484087-4830519 M1.5 ABMG M14 9.19 111.2 -51.0 36 Kin 1
J01521830-5950168 M2-3 THA M14 8.94 107.8 -27.0 40 Kin 1
J01540267-4040440 K7 COL M14 9.78 50.3 -14.7 84 Kin 1
J02045317-5346162 K5 THA M14 10.44 95.6 -30.9 42 Kin 1
J02125819-5851182 M3.5 THA K14 9.3 88.4 -16.1 48 Kin 1
J02153328-5627175 M4.9 THA K14 11.9 98.6 -29.3 42 Kin 1
J02180960-6657524 M4.5 THA K14 10.8 99.0 -14.7 42 Kin 2
J02192210-3925225 M5.9 THA K14 11.4 111.8 -44.0 36 Kin 1
J02303239-4342232 K5 COL GBII 8.02 78.1 -7.6 48.5 Plx 2
J02341866-5128462 M4.2 THA K14 10.6 100.6 -17.5 42 Kin 1
J02414683-5259523 K6 THA GBII 7.58 97.8 -15.4 43.3 Plx 1
J02420204-5359147 M4.3 THA K14 10.8 97.0 -20.8 42 Kin 1
J02423301-5739367 K5 THA GBII 8.56 84.9 -9.2 48.5 Plx 1
J02442137+1057411 M0 BPMG BII 7.97 68.4 -37.4 34.9 Plx 2
J02523096-1548357 M2.5 ABMG M13 10.54 78.0 -92.0 42 Kin 1
J02553178-5702522 M4.4 THA K14 11.1 89.5 -5.8 46 Kin 1
J02591904-5122341 M5.3 THA K14 11.7 81.7 -14.7 48 Kin 1
J03050556-5317182 M5.1 THA K14 11.1 89.4 -11.3 44 Kin 1
J03083950-3844363 M4.7 THA K14 11.2 68.3 -11.0 58 Kin 1
J03093877-3014352 M4.7 THA K14 11.6 88.7 -35.9 44 Kin 1
J03114544-4719501 M3.7 THA K14 10.4 88.4 -4.0 44 Kin 1
J03190864-3507002 K7 THA GBII 8.58 88.7 -20.0 45.3 Plx 1
J03241504-5901125 K7 COL M14 9.55 37.8 10.5 90 Kin 2
J03291649-3702502 M3.7 THA K14 10.6 89.8 -20.8 42 Kin 1
J03315564-4359135 K6 THA GBII 8.3 88.7 -4.2 45.2 Plx 2
J03320347-5139550 M2 COL M13 10.23 37.1 10.8 88 Kin 2
J03454058-7509121 M4 THA M14 10.82 64.3 23.0 54 Kin 1
J03494535-6730350 K7 COL M14 9.85 41.6 19.5 81 Kin 1
J03512287-5154582 M4.4 THA K14 10.6 71.9 2.4 50 Kin 1
J03561624-3915219 M4.5 THA K14 10.5 68.6 -3.7 52 Kin 2
J04013874-3127472 M4.7 THA K14 12.0 59.3 -12.3 58 Kin 1
J04074372-6825111 M2.6 THA K14 10.4 57.8 22.0 60 Kin 1
J04082685-7844471 M0 CAR M14 9.28 55.7 42.8 53 Kin 1
J04091413-4008019 M3.5 COL M14 10.65 46.4 8.1 63 Kin 1
J04133314-5231586 M1.7 THA K14 10.0 65.7 14.8 50 Kin 1
J04133609-4413325 M3.3 THA K14 10.8 56.7 0.4 60 Kin 1
J04274963-3327010 M4.5 THA K14 11.2 61.8 -0.7 52 Kin 1
J04363294-7851021 M4 ABMG M14 10.98 32.8 47.4 56 Kin 1
J04435860-3643188 M3.5 THA K14 10.7 54.1 -2.1 55 Kin 1
J04440099-6624036 M0.5 THA M14 9.47 53.0 30.2 55 Kin 1
J04470041-5134405 M2.4 THA K14 10.1 54.9 14.4 55 Kin 1
J04475779-5035200 M4.1 THA K14 10.9 47.9 17.8 60 Kin 2
J04480066-5041255 K7 THA GBII 8.74 56.9 17.1 57.7 Plx 2
J04514615-2400087 M3 ABMG M13 10.56 41.8 -56.9 45 Kin 1
J04515303-4647309 M0 COL M14 9.8 29.0 14.5 76 Kin 1
J04554034-1917553 M0.5 ABMG M14 9.78 21.8 -66.1 49 Kin 1
J05015881+0958587 M3 bPMG M13 7.21 12.1 -74.4 24.9 Plx 2
J05064991-2135091 M1+M3.5+M4 bPMG GBII 7.05 46.6 -16.3 19.7 Plx 3
J05111098-4903597 M3.5 COL M14 10.64 33.0 20.4 62 Kin 2
J05142736-1514514 M3.5 COL M14 10.71 36.0 -16.0 63 Kin 2
J05142878-1514546 M3.5 COL M14 10.95 34.1 -14.2 58 Kin 1
J05164586-5410168 M3 COL M14 10.43 26.3 26.6 69 Kin 1
J05224571-3917062 K7 FLD GBII 8.31 0.3 6.0 213.2 Plx 1
J05240991-4223054 M0.5 ABMG M14 10.58 4.9 -13.3 52 Kin 2
J05332558-5117131 K7 FLD GBII 8.99 42.2 27.0 55.2 Plx 1
J05395494-1307598 M3 COL M14 10.6 26.4 -18.9 54 Kin 1
J05432676-3025129 M0.5 COL M14 10.41 11.6 -0.3 87 Kin 1
J06012186-1937547 M3.5 COL M13 11.37 10.4 -9.0 79 Kin 1
J06135773-2723550 K5 FLD GBII 9.74 1.2 4.8 369 Plx 1
J06153953-8433115 M3 bPMG BII 9.25 -32.2 107.0 31 Kin 2
J06475229-2523304 K7 Amb M13 8.35 22.4 -70.3 240 Spec 2
J06511418-4037510 K5 FLD GBII 8.17 -1.0 7.1 1492 Plx 1
J07170438-6311123 M2 Amb M13 9.73 -13.1 48.0 53 Spec 1
J07343426-2401353 M3.5 ARG M13 10.65 -22.0 30.0 71 Kin 2
J07523324-6436308 K7 CAR M14 9.7 -5.9 27.8 88 Kin 3
J07540718-6320149 M3 CAR M14 10.33 -10.8 30.0 80 Kin 2
J08083927-3605017 K7 COL M14 9.53 -7.2 8.4 90 Kin 2
J08173829-6817162 M3.8 CAR G15 10.36 -15.6 58.1 53 Kin 2
J08173943-8243298 M4 bPMG M14 7.47 -81.9 102.6 27 Kin 2
J08422284-8345248 K7 CAR M13 9.45 -49.5 91.2 41 Kin 1
J08465879-7246588 K7 FLD GBII 8.49 -71.5 56.3 45.4 Plx 1
J09032434-6348330 M0.5 CAR M14 9.57 -34.5 35.4 66 Kin 3
J09331427-4848331 K7 FLD GBII 8.94 -48.9 19.6 45.5 Plx 1
J09353126-2802552 K7 Amb M13 8.51 -49.4 -57.4 46 Spec 1
J10120908-3124451 M4 TWA M14 8.85 -74.8 -9.4 53.9 Plx 2
J10182870-3150029 M0 Amb GBII 8.87 -55.6 -19.5 63.9 Plx 1
J10252092-4241539 M1 Amb M14 9.5 -46.8 -2.2 58 Kin 1
J10585054-2346206 M3.8 Amb G15 10.3 -92.3 -15.5 42 Kin 1
J11112820-2655027 M3.8 TWA G15 10.33 -87.4 -29.7 43 Kin 1
J11132622-4523427 M0 TWA M14 9.41 -44.1 -8.1 96.2 Plx 1
J11210549-3845163 M1 TWA M13 9 -68.3 -12.1 52 Kin 1
J11211723-3446454 M1 TWA M14 8.43 -67.4 -17.0 55.6 Plx 2
J11321831-3019518 M5 TWA M14 9.64 -89.6 -25.8 46 Kin 1
J11393382-3040002 M3.9 TWA G15 9.98 -79.9 -30.0 48 Kin 1
J11455177-5520456 K5 FLD GBII 8.02 -99.6 -5.9 42.6 Plx 1
J12072738-3247002 M3 TWA M14 8.62 -72.7 -29.3 53.8 Plx 1
J12092998-7505400 M3 ARG M14 9.91 -65.3 -0.6 77 Kin 2
J12103101-7507205 M4 Amb M13 11.19 -66.5 -5.8 28 Spec 1
J12153072-3948426 M1 TWA GBII 8.17 -76.5 -26.7 51.8 Plx 1
J12170465-5743558 K7 FLD GBII 8.71 -90.3 -11.3 231 Plx 1
J12242443-5339088 M5 Amb M13 10.51 -180.0 -60.0 16 Spec 1
J12313807-4558593 M3 TWA M14 9.33 -64.4 -28.6 77.5 Plx 1
J13213722-4421518 M0.5 Amb M13 9.74 -34.9 -18.8 64 Spec 1
J13412668-4341522 M3.5 Amb M14 10.75 -107.0 -60.8 42 Kin 1
J13545390-7121476 M2.5 bPMG M14 8.55 -165.0 -132.7 21 Kin 1
J13591045-1950034 M4.5 ARG M13 8.33 -552.7 -183.1 10.7 Plx 1
J14142141-1521215 K5 bPMG M13 7.43 -199.9 -172.8 30.2 Plx 3
J14252913-4113323 M2.5 Amb M14 8.55 -46.8 -49.2 66.9 Plx 1
J14284804-7430205 M1 ARG M13 9.26 -62.2 -36.3 76 Kin 1
J14563812-6623419 M1.5 ARG M13 10.4 -60.9 -40.4 73 Kin 1
J15163224-5855237 K7 ARG M13 9.1 -42.8 -44.2 77 Kin 2
J15244849-4929473 M2 ABMG M14 8.16 -121.1 -238.9 23 Kin 1
J16074132-1103073 M4 ABMG M14 9.82 -64.0 -148.0 36 Kin 2
J16572029-5343316 M3 bPMG GBII 8.69 -21.3 -90.9 51.5 Plx 3
J17080882-6936186 M3.5 THA M14 9.06 -55.6 -80.2 49 Kin 2
J17115853-2530585 M1 ARG M13 9.9 -15.1 -34.0 65 Kin 1
J17130733-8552105 M0 THA M14 8.59 -35.2 -58.1 62 Kin 2
J17150219-3333398 M0 bPMG M14 7.92 7.6 -176.9 23 Kin 1
J17165072-3007104 M2.5 FLD BII 10.37 -8.0 -36.0 65 Spec 2
J17243644-3152484 K7 FLD BII 9 -7.0 -34.6 56 Spec 3
J17275761-4016243 M4 Amb M13 10.04 -13.1 -50.4 43 Spec 1
J17292067-5014529 M3 bPMG M14 8.87 -6.3 -63.5 64 Kin 2
J17300060-1840132 M3.5 Amb M13 9.92 -8.1 -39.3 45 Spec 1
J17580616-2222238 M1 Amb M13 9.72 -5.9 -44.1 61 Spec 1
J18141047-3247344 K6 Amb M14 8.07 3.3 -52.0 73 Kin 1
J18142207-3246100 M1.5 bPMG M14 9.44 7.3 -39.9 90 Kin 1
J18151564-4927472 M3 bPMG M14 8.92 8.3 -71.5 61 Kin 1
J18202275-1011131 K5+K7 bPMG M14 7.64 10.5 -33.9 61 Kin 2
J18420694-5554254 M3.5 bPMG M14 9.49 11.2 -81.4 54 Kin 1
J18450097-1409053 M5 ARG M14 8.47 46.0 -84.0 16 Kin 2
J18465255-6210366 M1 bPMG M14 8.75 14.6 -81.1 54 Kin 1
J18504448-3147472 K7 bPMG GBII 8.31 13.7 -75.7 49.7 Plx 1
J18553176-1622495 M0.5 ABMG M13 9.13 32.6 -175.6 34 Kin 1
J18580415-2953045 M0 FLD GBII 8.86 8.4 -54.1 78.3 Plx 1
J19102820-2319486 M4 bPMG M14 9.1 17.6 -51.6 67 Kin 2
J19225071-6310581 M3 THA M14 9.45 -10.7 -77.4 61 Kin 1
J19233820-4606316 M0 bPMG M14 9.11 17.9 -57.9 70 Kin 1
J19243494-3442392 M4 bPMG M14 9.67 23.2 -72.1 54 Kin 1
J19312434-2134226 M2.5 ARG M14 8.69 63.0 -110.1 26 Plx 1
J19420065-2104051 M3.5 ABMG M13 8.69 48.0 -276.0 21 Kin 1
J19560294-3207186 M4 bPMG M14 8.96 32.6 -61.0 55 Kin 2
J19560438-3207376 M0 bPMG GBII 8.71 32.6 -68.9 50.2 Plx 1
J20013718-3313139 M1 bPMG M14 9.15 27.1 -60.9 61 Kin 1
J20072376-5147272 K6 ARG GBII 8.16 87.7 -143.6 33.7 Plx 1
J20220177-3653014 M4.5 ABMG M13 10.71 72.0 -188.0 33 Kin 1
J20223306-2927499 M3.5 ABMG M13 10.41 32.0 -104.0 58 Kin 2
J20330186-4903105 M5.2 bPMG G15 10.11 115.1 -208.0 16.3 Kin 1
J20333759-2556521 M4.5 bPMG M14 9.71 51.8 -76.8 48.3 Plx 1
J20395460+0620118 K7 FLD GBII 7.92 93.0 -103.3 38 Plx 1
J20405616-8245093 M3.6 ARG G15 9.52 89.9 -124.3 33 Kin 1
J20560274-1710538 K7+M0 bPMG M14 7.85 59.3 -63.0 44 Kin 2
J21100535-1919573 M2 bPMG M14 8.11 88.6 -92.5 32 Kin 1
J21103096-2710513 M5 bPMG M13 11.2 60.3 -79.7 40 Kin 1
J21130526-1729126 K6 ABMG GBII 8.35 76.9 -147.6 37.2 Plx 1
J21212873-6655063 K7 bPMG GBII 7.88 116.3 -90.9 32.1 Plx 1
J21334415-3453372 M1.5 Amb M13 10.24 40.4 -72.5 69 Spec 1
J21342935-1840372 M4 ARG M13 10.05 79.0 -11.4 51 Kin 2
J21370885-6036054 M3 THA M14 9.64 41.3 -91.3 48 Kin 1
J22440873-5413183 M4 THA M14 9.36 70.9 -60.1 49 Kin 2
J22470872-6920447 K6 FLD GBII 8.89 66.2 -65.8 52 Plx 1
J23124644-5049240 M4.4 THA K14 9.1 77.6 -75.7 46 Kin 2
J23204705-6723209 M5 THA M14 9.99 80.0 -97.1 41 Kin 2
J23301341-2023271 M3 FLD GBII 7.2 313.9 -204.6 16.1 Plx 1
J23332198-1240072 K5 ARG M13 10.28 164.2 9.0 31 Kin 2
J23424333-6224564 M4.4 THA K14 11.3 80.9 -61.6 46 Kin 1
J23524562-5229593 M5.3 THA K14 11.6 76.4 -82.4 44 Kin 1
Reference for the assocation allocation. BII: Re-evaluation in this work with BANYANII, based on ambiguous
classification in previous works. GBII: Re-evaluation based on GAIA data. G15: Gagné et al. (2015). K14:
Kraus et al. (2014). M13: Malo et al. (2013). M14: Malo et al. (2014).
Method of distance estimation. Plx: Parallax. Kin: Kinematics. Spec: Spectroscopic.
The number of components seen in the AstraLux images (i.e. 1 is single, etc).
Table 1: continued.
2MASS ID Pair Epoch CPM Ref
() (deg) (yr)
J00302572-6236015 AB 0.0980.005 262.40.6 2015.99 I TP
J00302572-6236015 AC 4.4130.023 238.80.2 2015.99 Y TP
J00340843+2523498 AB 1.5230.009 102.50.2 2015.91 Y WDS
J00514081-5913320 AB 10.9900.052 260.20.2 2015.99 N TP
J01024375-6235344 AB 0.6710.003 325.50.2 2015.99 I TP
J01033563-5515561 AB 0.1920.001 56.90.4 2015.98 Y D13
J01033563-5515561 AB–C 1.7670.014 335.90.5 2015.98 Y D13
J01372781-4558261 AB 0.1470.003 299.71.1 2015.99 I TP
J02180960-6657524 AB 0.3060.002 346.10.2 2015.99 I TP
J02303239-4342232 AB 0.0970.001 212.51.2 2015.98 Y E15
J02442137+1057411 AB 0.2490.002 322.60.2 2015.91 I TP
J03241504-5901125 AB 0.4770.008 280.70.3 2015.98 U N/A
J03315564-4359135 AB 0.4000.006 94.60.3 2015.99 Y E15
J03320347-5139550 AB 3.1710.018 115.70.2 2015.98 U N/A
J03561624-3915219 AB 0.2740.003 107.90.2 2015.99 U N/A
J04475779-5035200 AB 0.5300.002 121.40.2 2015.91 U N/A
J04480066-5041255 AB 1.0470.011 345.40.2 2015.98 Y E15
J05015881+0958587 AB 1.3980.012 146.90.2 2015.98 Y D99
J05064991-2135091 AB 8.4540.039 307.00.2 2015.99 Y WDS
J05064991-2135091 BC 0.9660.008 112.80.2 2015.99 Y WDS
J05111098-4903597 AB 2.3970.017 168.20.2 2015.99 U N/A
J05142736-1514514 AB 2.6790.016 268.50.2 2015.98 U N/A
J05240991-4223054 AB 0.2250.005 61.10.4 2015.98 U N/A
J06153953-8433115 AB 0.9650.008 275.50.2 2015.98 I TP
J06153953-8433115 AB 0.9740.008 275.40.2 2015.99 I TP
J06475229-2523304 AB 1.0760.013 27.90.2 2015.99 Y WDS
J07343426-2401353 AB 0.5790.003 127.10.2 2015.99 U N/A
J07343426-2401353 AB 0.5800.003 127.10.2 2016.38 U N/A
J07523324-6436308 AB 1.4250.012 211.00.2 2015.98 U N/A
J07523324-6436308 BC 0.1510.002 330.10.7 2015.98 U N/A
J07523324-6436308 AB 1.4400.012 210.60.2 2016.38 U N/A
J07523324-6436308 BC 0.1620.001 329.90.7 2016.38 U N/A
J07540718-6320149 AB 0.8540.011 156.80.2 2015.98 U N/A
J07540718-6320149 AB 0.8590.004 156.60.2 2016.38 U N/A
J08083927-3605017 AB 0.1080.001 309.40.8 2015.99 U N/A
J08083927-3605017 AB 0.1040.001 305.50.4 2016.38 U N/A
J08173829-6817162 AB 1.5850.012 39.40.2 2016.38 U N/A
J08173943-8243298 AB 0.5840.003 3.80.2 2015.98 Y C10
J08173943-8243298 AB 0.5840.003 3.60.2 2016.38 Y C10
J09032434-6348330 AC 7.9860.038 153.30.2 2015.98 U N/A
J09032434-6348330 AB 1.1130.011 66.00.2 2015.98 U N/A
J09032434-6348330 AB 1.1390.012 67.30.2 2016.38 U N/A
J10120908-3124451 AB 1.0400.012 87.20.2 2015.98 Y WDS
J10120908-3124451 AB 1.0370.011 86.90.2 2016.38 Y WDS
J11211723-3446454 AB 5.0490.025 327.30.2 2015.98 Y WDS
J12092998-7505400 AB 0.3000.002 169.10.4 2015.99 Y TP
J12092998-7505400 AB 0.2970.002 169.50.2 2016.38 Y TP
J14142141-1521215 AB 0.2440.002 164.00.7 2016.38 Y C10
J14142141-1521215 AC 1.5650.012 78.80.2 2016.38 Y C10
J15163224-5855237 AB 2.3310.014 27.00.2 2016.38 U N/A
J16074132-1103073 AB 0.7400.011 149.20.2 2016.38 Y B15
J16572029-5343316 AB 3.1960.013 101.50.2 2016.38 U N/A
J16572029-5343316 AC 3.4870.014 298.40.2 2016.38 U N/A
J17080882-6936186 AB 0.4410.002 9.30.2 2016.38 I TP
J17130733-8552105 AB 0.3600.003 114.50.2 2016.38 U N/A
J17165072-3007104 AB 1.7010.012 298.70.2 2016.38 U N/A
J17243644-3152484 AB 0.1420.001 351.81.8 2016.38 U N/A
J17243644-3152484 AC 0.9020.011 198.20.2 2016.38 U N/A
J17292067-5014529 AB 0.6860.010 15.70.2 2016.38 Y E15
J18202275-1011131 AB 0.9980.011 17.70.2 2016.38 Y WDS
J18450097-1409053 AB 3.2240.016 123.80.2 2016.38 Y TP
J19102820-2319486 AB 0.4240.002 172.80.2 2016.38 U N/A
J19560294-3207186 AB 0.1770.001 250.70.2 2016.38 Y B15
J20223306-2927499 AB 0.1560.001 214.22.0 2016.38 I TP
J20560274-1710538 AB 2.1810.013 140.30.2 2016.38 Y J01
J21342935-1840372 AB 0.3340.006 270.00.4 2016.38 I TP
J22440873-5413183 AB 0.5170.003 298.30.2 2015.99 Y C10
J23124644-5049240 AB 0.4260.003 71.40.2 2015.99 I TP
J23204705-6723209 AB 2.8700.017 15.20.2 2015.99 Y TP
J23332198-1240072 AB 3.7670.022 14.60.2 2015.99 N TP
Flag for CPM. Y if proven CPM, N if non-CPM, U if undetermined, I if implied (see text).
CPM reference. TP: This paper. WDS: The Washington Double Star catalogue (Mason et al., 2001). B15:
Bowler et al. (2015). C10: Chauvin et al. (2010). D99: (Delfosse et al., 1999). D13: (Delorme et al., 2013). E15:
Elliott et al. (2015). J01:Jayawardhana & Brandeker (2001).
Pair displays false triple effect – possibly subject to a 180 deg ambiguity.
Table 2: continued.
(mag) () () (AU) (yr)
J00302572-6236015 AC 1.330.02 0.6 0.6 194 2470
J00340843+2523498 AB 0.040.01 0.6 0.6 75 589
J00514081-5913320 AB 2.350.04 0.13 0.03 462 24792
J01024375-6235344 AB 0.560.02 0.4 0.3 31 205
J01372781-4558261 AB 1.300.05 0.11 0.06 6 32
J02180960-6657524 AB 0.760.02 0.15 0.1 13 92
J02442137+1057411 AB 2.030.05 0.7 0.2 9 27
J03241504-5901125 AB 2.970.13 0.8 0.2 43 281
J03315564-4359135 AB 4.090.27 0.7 0.08 18 87
J03320347-5139550 AB 1.570.02 0.6 0.3 279 4914
J03561624-3915219 AB 1.000.01 0.3 0.15 14 80
J04480066-5041255 AB 0.920.02 0.7 0.5 60 429
J05015881+0958587 AB 0.790.02 0.6 0.4 35 205
J05064991-2135091 AB 0.490.01 0.6 0.5 162 1972
J05064991-2135091 BC 0.530.01 0.5 0.4 19 84
J05111098-4903597 AB 6.100.07 0.3 0.015 149 3228
J05142736-1514514 AB 1.260.02 0.3 0.13 169 3344
J05240991-4223054 AB 1.330.03 0.4 0.2 12 52
J06153953-8433115 AB 0.130.01 0.17 0.15 30 289
J06475229-2523304 AB 3.220.05 1.4 0.7 258 2864
J07343426-2401353 AB 0.370.01 0.3 0.2 41 373
J07523324-6436308 AB 2.410.03 0.7 0.2 125 1480
J07523324-6436308 BC 0.400.06 0.2 0.17 13 80
J07540718-6320149 AB 0.280.02 0.5 0.4 68 595
J08083927-3605017 AB 1.390.06 0.7 0.4 10 29
J08173829-6817162 AB 0.530.03 0.3 0.2 84 1089
J08173943-8243298 AB 0.830.02 0.5 0.3 16 70
J09032434-6348330 AB 2.370.02 0.6 0.15 73 727
J09032434-6348330 AC 1.640.03 0.6 0.2 527 13529
J10120908-3124451 AB 0.010.04 0.3 0.3 56 542
J11211723-3446454 AB 0.000.02 0.7 0.7 281 3975
J14142141-1521215 AB 3.030.21 0.8 0.15 7 21
J14142141-1521215 AC 1.320.03 0.8 0.5 47 285
J15163224-5855237 AB 0.000.03 0.7 0.7 179 2032
J16074132-1103073 AB 0.080.03 0.3 0.3 27 178
J16572029-5343316 AB 5.600.36 0.7 0.03 165 2471
J16572029-5343316 AC 6.590.69 0.7 0.02 180 2836
J17080882-6936186 AB 1.090.05 0.6 0.3 22 106
J17165072-3007104 AB 0.990.02 0.5 0.3 111 1300
J17243644-3152484 AB 2.290.09 0.7 0.4 8 21
J17243644-3152484 AC 0.170.02 0.7 0.7 51 303
J17292067-5014529 AB 0.180.02 0.6 0.6 44 266
J18202275-1011131 AB 0.350.02 0.9 0.8 61 364
J18450097-1409053 AB 0.110.02 0.2 0.2 52 586
J19102820-2319486 AB 0.830.03 0.7 0.5 28 138
J19560294-3207186 AB 1.710.04 0.6 0.2 10 34
J20560274-1710538 AB 2.080.02 0.8 0.3 96 896
J22440873-5413183 AB 0.400.01 0.4 0.3 25 152
J23124644-5049240 AB 0.540.02 0.5 0.4 20 91
J23204705-6723209 AB 1.090.02 0.3 0.15 118 1903
J23332198-1240072 AB 6.600.08 0.3 0.02 117 2231
Table 3: continued.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description