An efficient method to identify galaxy clusters

An efficient method to identify galaxy clusters by using SuperCOSMOS, 2MASS and WISE data

W. W. Xu1 2 , Z. L. Wen1 and J. L. Han1
1affiliation: National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; zhonglue@nao.cas.cn.
2affiliation: University of Chinese Academy of Sciences, Beijing 100012, China
Abstract

The survey data of Wide-field Infrared Survey Explorer (WISE) provide an opportunity for the identification of galaxy clusters. We present an efficient method for detecting galaxy clusters by combining the WISE data with SuperCOSMOS and 2MASS data. After performing star-galaxy separation, we calculate the number of companion galaxies around the galaxies with photometric redshifts previously estimated by the SuperCOSMOS, 2MASS and WISE data. A scaled richness is then defined to identify clusters. From a sky area of 275 coincident with Sloan Digital Sky Survey Stripe 82 region, we identify 302 clusters in the redshift range of , 247 (82) of which are previously known SDSS clusters. The results indicate that our method is efficient for identifying galaxy clusters by using the all sky data of the SuperCOSMOS, 2MASS and WISE.

Subject headings:
Infrared; Galaxy clusters; Redshifts

1. Introduction

Galaxy clusters are known as the largest gravitational bounded systems in the universe. They are located at nods of cosmic web. The space distribution of galaxy clusters traces the large scale structure (Bahcall, 1988; Allen et al., 2011; Hong et al., 2012). Their mass distribution can be used to constrain cosmological parameters (Reiprich & Bohringer, 2002; Wen et al., 2010). Clusters are also regarded as natural gravitational lens to magnify faint background sources (Wen et al., 2011; Liang et al., 2013) and laboratories to study galaxy evolution (Wen & Han, 2011; Liu et al., 2012). Discovery of galaxy clusters is the basis for many related studies.

In optical/infrared, a lot of methods have been used to detect clusters from image data. By visual inspection of optical images, Abell identified more than 4000 nearby rich clusters covering the whole sky (Abell, 1958; Abell et al., 1989). Similar visual inspections were undertaken by Zwicky et al. (1968) and Gunn et al. (1986). For reducing subjectivity, automated peak-finding methods were developed, e.g., matched-filter algorithm (Postman et al., 1996), adaptive kernel technique (Gal et al., 2003) and Voronoi tessellation techniques (Ramella et al., 2001; Kim et al., 2002). The single-band image data always suffer severe contamination from foreground and background galaxies and provide very poor redshift estimation of clusters.

The Sloan Digital Sky Survey (SDSS, York et al., 2000) offers an opportunity to identify a large number of clusters. It provides photometry in five broad bands (, , , , and ) covering 14,000 deg, as well as the follow-up spectroscopic observations. In such multi-band surveys, galaxy colors are related to their redshifts. Member galaxies have similar colors and show a red sequence, so that proper cuts in colors can reduce projection effect for cluster identification. A lot of red-sequence based methods have been developed (Gladders & Yee, 2000, 2005; Goto et al., 2002; Koester et al., 2007). Photometric redshifts were estimated for all galaxies (Csabai et al., 2003; Oyaizu et al., 2008). A large number of galaxy clusters have been found based on photometric redshift (Wen et al., 2009, 2012; Szabo et al., 2011).

Except for Abell clusters at low redshift (Abell et al., 1989), there is no all sky cluster catalog up to intermediate redshift of . The Wide-field Infrared Survey Explorer (WISE) is an all-sky survey at infrared wavelengthes with the observation depth similar to that of the SDSS (Yan et al., 2013), which provides an opportunity to identify many new clusters covering the whole sky. Combined with optical data, the WISE data have been used to identify clusters at high redshift (Gettings et al., 2012).

In this paper, we present a simple but very efficient method to identify galaxy clusters by combing the WISE data with the SuperCOSMOS (Hambly et al., 2001) and Two Micron All Sky Survey (2MASS, Skrutskie et al., 2006) data. In Section 2, we describe the data, present our method for the identification of galaxy clusters, and apply it to the data in the SDSS Stripe 82 region111http://cas.sdss.org/stripe82/en/. In Section 3, we compare the identified clusters with previous SDSS clusters. A summary is given in Section 4.

2. Data and algorithm for cluster identification

2MASS is an all-sky survey in three infrared bands, (1.25 m), (1.65 m) and (2.17 m). The effective resolution of 2MASS is 5. The magnitude limits of 2MASS are 15.8, 15.1 and 14.3 (10) for point sources, and 15.0, 14.3 and 13.5 for extended sources in the three bands, respectively (Skrutskie et al., 2006).

The WISE observes the whole sky in four infrared bands, (3.4 m), (4.6 m), (12 m) and (22 m). The angular resolutions in the four bands are 6.1, 6.4, 6.5 and 12.0, respectively. The all sky survey depths are 16.5, 15.5, 11.2 and 7.9 (5) for point sources (Wright et al., 2010). The most important data for cluster identification are WISE -band and 2MASS -band magnitudes. In terms of detecting distant galaxies, the WISE data is much deeper than the 2MASS data. The limit of cluster detection mainly depends on the depth of the 2MASS data.

Because of the poor resolutions, both WISE and 2MASS data have no reliable star-galaxy separation for most objects by morphological parameters. However, stars and galaxies can be well separated by color index, (Kovács & Szapudi, 2013). We cross-match the 2MASS-WISE objects with known stars and galaxies in SDSS DR7 (Abazajian et al., 2009) brighter than mag with a matching radius of 3. In Figure 2, we show the efficiency for the star-galaxy separation with the color index of the WISE-2MASS data. Galaxies are very well separated with the criteria of mag.

Figure 1 Separation of stars and galaxies by color index, . The vertical line is mag, which is used as the threshold for star-galaxy separation.

To get redshift information for galaxy clusters, we use the catalog of galaxy photometric redshifts222http://surveys.roe.ac.uk/ssa/TWOMPZ given by Bilicki et al. (2014) for 2MASS galaxies. By combining the data of SuperCOSMOS, 2MASS and WISE, these authors applied an artificial neural network approach to estimate photometric redshifts of galaxies covering the whole sky. The photometric redshift has an uncertainty of and small percentage of outliers. Note that only 2MASS extended sources have photometric redshifts. The number of galaxies with photometric redshifts is about one tenth of the galaxies separated by .

Using the WISE-2MASS data together with photometric redshifts by Bilicki et al. (2014) in the SDSS Stripe 82 region of and , we make cluster identification in the following steps.

For each galaxy with a photometric redshift, we take it as the temporary central galaxy of a cluster candidate, and the photometric redshift is taken as the redshift of the cluster candidate. We then calculate the number of companion galaxies from all separated galaxies within a projected distance of 1 Mpc. The average number of background galaxies is estimated using the galaxies within the projected distance between 2 and 4 Mpc from the assumed central galaxy. We then get the net number of companion galaxies within 1 Mpc of the central galaxy after background subtraction, which is taken as a measured richness, . To avoid a cluster identified repeatedly, we applied the friend-of-friend technique (Huchra & Geller, 1982) to merge the members into a cluster candidate, and consider only one cluster candidate within a projected distance of 1 Mpc and a photometric redshift difference of 0.05. We take the cluster candidate with the maximum measured richness, .

Figure 2 The value of as a function of redshift for the matched WHL12 clusters of . The solid line is the best-fit relation.

The second step is to find a richness threshold to identify real galaxy clusters. The best selection is that the cluster richness is related to cluster mass. Because we use the flux-limited galaxy sample of the WISE-2MASS data, the measured richness, , strongly depends on redshift for clusters with a fixed mass. Here, we define a scaled richness with redshift correction,

(1)

to relate cluster mass, where is the correction slope. Note that the richness, , in the catalog of Wen et al. (2012, WHL12 hereafter) has a good correlation with cluster mass. Thus, we cross-match the identified cluster candidates with the WHL12 clusters of by using criteria of a projected separation of 1 Mpc and a redshift difference of 0.05. To get a proper value of , we plot as a function of redshift for the matched clusters (Figure 2). The best fit gives . We get similar results when matching WHL12 clusters in other ranges. Figure 3 shows the comparison of with and . Clearly, has a better correlation with than with .

We define a cluster to have in our new identifications. To avoid the occasional projection effect, we also require . The cluster candidates with photometric redshift of are excluded because the angular radius varies rapidly for the fixed radius of 1 Mpc at low redshift, which induces large uncertainty on richness. Finally, we get 302 clusters in the redshift range of from the 275 deg SDSS Stripe 82 area, which is listed in Table 1. The histograms for the redshift and scaled richness are shown in Figure 4. The identified clusters have a mean redshift of 0.18. If our algorithm is applied to the all sky SuperCOSMOS, 2MASS and WISE data excluding the Galactic plane of , we can find about 37,000 galaxy clusters, which will greatly enlarge the number of galaxy clusters in the region outside of the SDSS coverage.

Figure 3 Comparison of measured richness (upper panel) and scaled richness (lower panel) with the richness in WHL12 for matched cluster candidates.

Figure 4 Distributions of redshift and scaled richness for the 302 identified clusters.

Figure 5 Comparison between cluster photometric redshift and spectroscopic redshift for 291 clusters.

To estimate the uncertainty of photometric redshift of clusters, we compare the cluster redshifts with the spectroscopic redshifts of the central galaxies in the SDSS DR7 data (Abazajian et al., 2009). 291 of 302 central galaxies have their spectroscopic redshifts measured already. As shown in Figure 5, the cluster photometric redshift is consistent with spectroscopic redshift with a scatter of 0.022. The central galaxies without spectroscopic redshifts are not observed by the SDSS spectroscopic survey, probably due to fiber collision. We take the value of 0.022 as the typical uncertainty of cluster photometric redshift.

3. Comparison with previous galaxy clusters catalogs

There are many clusters in the Stripe 82 region identified previously in the catalogs (i.e., Goto et al., 2002; Koester et al., 2007; Hao et al., 2010; Szabo et al., 2011; Geach et al., 2011; Wen et al., 2009, 2012). Generally, these catalogs have a low false detection rate of 5%. The completeness is as high as 90% for clusters with mass and is about 50% for cluster with mass (e.g., Wen et al., 2012). We regard the clusters in these catalogs as true clusters and compare them with 302 identified clusters. 247 of 302 (82%) identified clusters are matched with the known clusters within a separation of 1 Mpc and a redshift difference of 0.05. The matched percentage of the identified clusters with known SDSS clusters varies with richness as expected, as shown in Figure 6. The matched percentage increases from 82% with a richness of 30 to 95% with a richness of 60. Most of the unmatched clusters have a low richness which all previous methods are less sensitive to detect. In previous catalogs, the matched percentage between them is in the range of 40%–80%, and even lower for poor clusters with a small richness (Szabo et al., 2011; Wen et al., 2012). The value of 82% is very high compared with previous matched percentage, suggesting that our identification method is very efficient for finding clusters by using the SuperCOSMOS, 2MASS and WISE data.

There are 196 clusters matched with the WHL12 clusters, of which 118 (60) have the central galaxies matched with the brightest cluster galaxies (BCG) of the WHL12, suggesting that the method presented in this paper has a high probability to find the BCGs. We calculate the projected distance between the central galaxies of identified clusters and BCGs of the WHL12 clusters. As shown in Figure 7, the distribution is random for the central galaxies not matched with the BCGs. For these clusters, the BCGs may not be located at the positions with the maximum overdensity of galaxy numbers found within a radius of 1 Mpc. Some of these clusters may have multiple bright member galaxies in different sub-clusters.

Figure 6 Matched percentage of identified clusters by previously known SDSS clusters as a function of richness limit.

Figure 7 Distribution of projected distance between central galaxies of the identified clusters and BCGs of the WHL12 clusters. The dashed line is for the matched central galaxies with angular offset less than 3 from the BCGs.

Many works used red-sequence methods to identify clusters in multi-band surveys (e.g., Gladders & Yee, 2000, 2005; Koester et al., 2007). The basis of such methods is that cluster galaxies have similar colors, which are tightly related to redshift. We check if the colors by the WISE and 2MASS data have tight correlations with redshift for the central galaxies. We find that the colors, and , have poor correlations with redshift (Figure 8). Cluster identification with and may have large uncertainty at redshift of . Therefore the photometric redshift data provide a better opportunity to identify a whole sky galaxy cluster catalog up to redshift .

Figure 8 Colors (upper panel) and (lower panel) of central galaxies versus cluster redshift. Black dots are for spectroscopic redshifts. Open circles are for photometric redshifts with a typical uncertainty of 0.022.

4. Summary

In this paper, we present an efficient method to identify galaxy clusters by using the SuperCOSMOS, 2MASS and WISE data. First, we perform star-galaxy separation by color index, . Then, clusters are identified around the galaxies with estimated photometric redshift. We get a measured richness and define a scaled richness, , by comparing the richness of Wen et al. (2012). Our method is applied to the data in the SDSS Stripe 82 region and identify 302 clusters of in the redshift range of . The photometric redshift has an uncertainty of 0.022. 82% of our clusters are matched with previous SDSS cluster catalogs. Our results confirm that this approach has a good potential to detect many new galaxy clusters in the all sky data of SuperCOSMOS, 2MASS and WISE, especially in the region out of the SDSS coverage.

We thank the referee for valuable comments that helped to improve the paper. We thank Jun Han for carefully reading the manuscript, Zhongsheng Yuan and Jun Xu for useful discussion. The authors are supported by the National Natural Science Foundation (NNSF) of China (10833003 and 11103032) and the Young Researcher Grant of National Astronomical Observatories, Chinese Academy of Sciences. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, Cambridge University, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max Planck Institute for Astronomy (MPIA), the Max Planck Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

References

  • Abell (1958) Abell, G. O. 1958, ApJS, 3, 211
  • Abell et al. (1989) Abell, G. O., Corwin, H. G., Jr., & Olowin, R. P. 1989, ApJS, 70, 1
  • Abazajian et al. (2009) Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543
  • Allen et al. (2011) Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, ARA&A, 49, 409
  • Bahcall (1988) Bahcall, N. A. 1988, ARA&A, 26, 631
  • Bilicki et al. (2014) Bilicki, M., Jarrett, T. H., Peacock, J. A., Cluver, M. E., & Steward, L. 2014, ApJS, 210, 9
  • Csabai et al. (2003) Csabai, I., Budavári, T., Connolly, A. J., et al. 2003, AJ, 125, 580
  • Gal et al. (2003) Gal, R. R., de Carvalho, R. R., Lopes, P. A. A., et al. 2003, AJ, 125, 2064
  • Geach et al. (2011) Geach, J. E., Murphy, D. N. A., & Bower, R. G. 2011, MNRAS, 413, 3059
  • Gettings et al. (2012) Gettings, D. P., Gonzalez, A. H., Stanford, S. A., et al. 2012, ApJ, 759, L23
  • Gladders & Yee (2000) Gladders, M. D., & Yee, H. K. C. 2000, AJ, 120, 2148
  • Gladders & Yee (2005) Gladders, M. D., & Yee, H. K. C. 2005, ApJS, 157, 1
  • Goto et al. (2002) Goto, T., Sekiguchi, M., Nichol, R. C., et al. 2002, AJ, 123, 1807
  • Gunn et al. (1986) Gunn, J. E., Hoessel, J. G., & Oke, J. B. 1986, ApJ, 306, 30
  • Hambly et al. (2001) Hambly, N. C., Irwin, M. J., & MacGillivray, H. T. 2001, MNRAS, 326, 1295
  • Hao et al. (2010) Hao, J., McKay, T. A., Koester, B. P., et al. 2010, ApJS, 191, 254
  • Hong et al. (2012) Hong, T., Han, J. L., Wen, Z. L., Sun, L., & Zhan, H. 2012, ApJ, 749, 81
  • Huchra & Geller (1982) Huchra, J. P., & Geller, M. J. 1982, ApJ, 257, 423
  • Kim et al. (2002) Kim, R. S. J., Kepner, J. V., Postman, M., et al. 2002, AJ, 123, 20
  • Koester et al. (2007) Koester, B. P., McKay, T. A., Annis, J., et al. 2007, ApJ, 660, 221
  • Kovács & Szapudi (2013) Kovács, A., & Szapudi, I. 2013, arXiv:1401.0156
  • Liang et al. (2013) Liang, S. M., Wen, Z. L., Han, J. L., & Jiang, Y. Y. 2014, Sci. China Phys. Mech. Astron., in press (arXiv:1310.4885)
  • Liu et al. (2012) Liu, F., Wen, Z., Han, J., & Meng, X. 2012, Science China Physics, Mechanics, and Astronomy, 55, 354
  • Oyaizu et al. (2008) Oyaizu, H., Lima, M., Cunha, C. E., et al. 2008, ApJ, 674, 768
  • Postman et al. (1996) Postman, M., Lubin, L. M., Gunn, J. E., et al. 1996, AJ, 111, 615
  • Ramella et al. (2001) Ramella, M., Boschin, W., Fadda, D., & Nonino, M. 2001, A&A, 368, 776
  • Reiprich & Bohringer (2002) Reiprich, T. H., Bohringer, H. 2002, ApJ, 567, 716
  • Skrutskie et al. (2006) Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
  • Szabo et al. (2011) Szabo, T., Pierpaoli, E., Dong, F., Pipino, A., & Gunn, J. 2011, ApJ, 736, 21
  • Wen et al. (2010) Wen, Z. L., Han, J. L., & Liu, F. S. 2010, MNRAS, 407, 533
  • Wen et al. (2011) Wen, Z.-L., Han, J.-L., & Jiang, Y.-Y. 2011, Research in Astronomy and Astrophysics, 11, 1185
  • Wen & Han (2011) Wen, Z. L., & Han, J. L. 2011, ApJ, 734, 68
  • Wen et al. (2009) Wen, Z. L., Han, J. L., & Liu, F. S. 2009, ApJS, 183, 197
  • Wen et al. (2012) Wen, Z. L., Han, J. L., & Liu, F. S. 2012, ApJS, 199, 34
  • Wright et al. (2010) Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
  • Yan et al. (2013) Yan, L., Donoso, E., Tsai, C.-W., et al. 2013, AJ, 145, 55
  • York et al. (2000) York, D. G., Adelman, J., Anderson, J. E., Jr., et al. 2000, AJ, 120, 1579
  • Zwicky et al. (1968) Zwicky, F., Herzog, E., & Wild, P. 1968, Pasadena: California Institute of Technology (CIT), 1961-1968,
ID R.A. Decl. Note
(deg) (deg) (mag) (mag)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 312.7079 -1.0438 0.1335 0.1490 15.53 0.10 13.52 0.03 30.03 9.08 Geach
2 312.8900 -0.0495 0.1400 0.1477 15.15 0.06 13.25 0.02 41.98 12.08 MaxBCG,AMF,Geach,WHL12
3 313.0400 0.3102 0.1754 0.1464 15.55 0.09 13.60 0.03 33.57 7.42 MaxBCG,GMBCG,Geach,WHL12
4 314.3147 1.2120 0.1788 0.1636 15.61 0.08 13.81 0.03 36.30 7.83 New
5 315.0705 0.4328 0.1035 0.0788 15.39 0.06 13.69 0.03 40.71 15.50 New
6 315.7259 0.8867 0.2576 0.2614 16.45 0.15 14.22 0.04 83.93 10.33 AMF,Geach,WHL12
7 315.7609 0.8942 0.1340 0.1355 15.07 0.07 13.12 0.03 62.27 18.75 GMBCG,Geach,WHL12
8 315.8023 -1.0171 0.1912 0.1616 15.64 0.08 13.73 0.03 75.73 14.92 GMBCG,AMF,Geach,WHL12
9 315.8495 0.9987 0.1477 0.1769 16.06 0.10 13.85 0.04 36.20 9.83 WHL12
10 316.1830 0.9142 0.1826 0.1672 15.88 0.10 13.80 0.03 36.94 7.75 GMBCG,AMF,Geach,WHL12
11 317.9637 0.0149 0.2209 0.2107 16.18 0.13 14.02 0.03 43.97 7.00 MaxBCG,GMBCG,AMF,Geach,WHL12
12 318.5470 -0.5487 0.2553 0.2351 15.95 0.10 13.91 0.03 31.99 4.00 AMF,WHL12
13 319.3704 0.1176 0.2553 0.2336 16.05 0.10 13.84 0.03 33.35 4.17 MaxBCG,GMBCG,AMF,Geach,WHL12
14 319.5089 0.8675 0.1562 0.1208 15.72 0.09 13.73 0.03 36.30 9.25 Geach
15 319.9571 1.1862 0.1204 0.1365 15.52 0.07 13.55 0.02 49.88 16.67 AMF
16 320.9352 -0.6985 0.2308 0.1950 15.89 0.10 13.69 0.03 49.39 7.33 MaxBCG,GMBCG,AMF,Geach,WHL12
17 321.1893 -0.5187 0.2524 0.2305 15.98 0.10 13.90 0.04 54.87 7.00 MaxBCG,GMBCG,AMF,Geach,WHL12
18 321.4364 1.0129 0.1497 0.1374 15.54 0.09 13.64 0.03 65.10 17.42 GMBCG,AMF,Geach,WHL12
19 322.4165 0.0891 0.2033 0.2339 14.98 9.99 13.46 0.03 68.29 12.33 MaxBCG,GMBCG,Geach,WHL12
20 322.4345 0.3405 0.1952 0.1787 15.68 0.10 13.52 0.03 46.15 8.83 MaxBCG,Geach,WHL12
21 322.4928 -0.3298 0.1547 15.68 0.09 13.90 0.03 42.69 11.00 MaxBCG,GMBCG,Geach,WHL12
22 322.5165 -0.3523 0.2405 0.2367 16.37 0.14 13.99 0.03 50.52 7.00 MaxBCG,GMBCG,Geach,WHL12
23 322.5982 -0.0492 0.1569 0.1334 15.64 0.07 13.82 0.03 54.24 13.75 MaxBCG,GMBCG,Geach,WHL12
24 323.1762 1.1921 0.2061 16.11 0.10 13.24 0.02 37.72 6.67 New
25 323.5251 -0.5225 0.2381 0.2292 15.78 0.11 13.55 0.03 53.79 7.58 GMBCG,Geach
26 323.5826 0.5438 0.1967 0.1798 15.61 0.07 13.73 0.03 41.37 7.83 GMBCG,Geach
27 323.8004 -1.0496 0.3083 15.67 9.99 13.85 0.03 67.92 5.92 GMBCG,Geach,WHL12
28 323.9428 0.1158 0.1169 0.1174 15.81 0.12 13.52 0.03 120.70 41.42 Abell,MaxBCG,GMBCG,AMF,Geach,WHL12
29 324.6582 -0.3506 0.1521 0.1552 15.24 0.07 13.58 0.05 30.44 8.00 New
30 326.1441 1.1394 0.2267 0.2268 16.00 0.10 13.74 0.03 89.52 13.67 Abell,Geach,WHL12
31 326.3670 -0.7800 0.1850 0.1607 15.36 0.09 13.23 0.02 73.60 15.17 MaxBCG,GMBCG,Geach,WHL12
32 326.5361 -0.2424 0.2130 0.2287 16.15 0.12 14.07 0.04 31.67 5.33 Geach,WHL12
33 326.8617 0.7289 0.1181 0.0725 15.72 0.11 13.57 0.03 51.21 17.42 Abell,MaxBCG,Geach,WHL12
34 328.5980 0.0844 0.1603 0.1480 15.05 0.08 12.94 0.03 46.50 11.50 MaxBCG,GMBCG,Geach,WHL12
35 328.6150 0.6436 0.1831 14.86 0.06 13.29 0.03 31.11 6.50 Abell,MaxBCG,GMBCG,AMF,Geach,WHL12
36 328.7676 0.8724 0.2064 0.2123 16.14 0.11 13.62 0.03 58.51 10.33 GMBCG,AMF,Geach,WHL12
37 328.8372 1.1254 0.2370 0.2118 15.67 0.08 13.77 0.03 39.91 5.67 Geach,WHL12
38 328.9167 0.5372 0.1858 0.2048 15.51 0.08 13.43 0.03 46.75 9.58 MaxBCG,AMF,Geach,WHL12
39 329.3690 -0.9485 0.1273 0.1065 16.39 0.15 14.04 0.03 32.08 10.17 New
40 329.3874 -0.9288 0.2372 0.1939 15.74 0.08 13.70 0.03 71.06 10.08 MaxBCG,Geach,WHL12
41 329.9931 -0.6349 0.1108 0.1275 15.54 0.10 14.09 0.05 47.27 17.00 AMF,WHL12
42 330.1559 -0.5459 0.1398 0.1265 15.44 0.10 13.26 0.02 49.43 14.25 MaxBCG,Geach,WHL12
43 331.2684 -0.5626 0.1597 0.1437 15.73 0.08 13.77 0.03 69.46 17.25 MaxBCG,Geach,WHL12
44 331.6891 1.0279 0.2372 0.2397 16.25 0.13 13.74 0.03 43.50 6.17 AMF,Geach,WHL12
45 332.3338 1.2364 0.1606 0.1503 15.64 0.09 13.67 0.03 37.50 9.25 New
46 334.1963 -0.9939 0.1965 0.1518 15.78 0.11 13.64 0.03 31.64 6.00 WHL12
47 335.4678 -0.9728 0.3354 0.3349 16.51 0.15 13.71 0.03 65.23 4.75 Geach
48 335.4820 -1.0553 0.1051 0.1072 14.89 0.06 13.17 0.02 64.94 24.42 WHL12
49 335.5464 -1.0006 0.2206 0.1497 15.80 0.09 13.92 0.03 44.97 7.17 New
50 335.6234 0.5694 0.1859 0.1722 15.53 0.09 13.37 0.02 67.16 13.75 Abell,MaxBCG,Geach,WHL12
51 335.7316 0.5291 0.1445 0.1638 16.41 0.14 13.92 0.03 45.54 12.67 Abell,GMBCG,AMF,Geach,WHL12
52 336.0885 0.3597 0.1570 0.1420 15.71 0.09 13.73 0.03 65.81 16.67 MaxBCG,GMBCG,Geach,WHL12
53 336.2299 -0.3840 0.1559 0.1420 15.38 0.10 12.98 0.02 54.80 14.00 MaxBCG,Geach,WHL12
54 337.2881 0.4193 0.1523 0.1301 15.41 0.06 13.61 0.03 30.80 8.08 Geach,WHL12
55 337.5326 -0.0037 0.2279 0.2081 15.72 0.08 13.78 0.03 86.35 13.08 MaxBCG,GMBCG,AMF,Geach,WHL12
56 337.8498 0.2527 0.2769 0.2559 15.97 0.09 13.93 0.03 75.82 8.17 MaxBCG,GMBCG,Geach,WHL12
57 337.9117 -1.0345 0.1458 0.1524 15.94 0.11 13.78 0.03 31.46 8.67 New
58 338.4055 0.6970 0.1742 0.1495 15.99 0.11 13.87 0.03 56.38 12.58 AMF
59 338.5464 1.0411 0.1905 15.85 0.08 13.76 0.03 60.60 12.00 MaxBCG
60 338.8853 -1.1846 0.1007 0.0890 15.34 0.08 13.52 0.03 41.57 16.17 GMBCG,Geach,WHL12
61 339.5265 0.5325 0.2373 0.2036 15.89 0.10 13.75 0.03 34.71 4.92 WHL12
62 339.5725 -1.0250 0.1301 0.1167 15.43 0.07 13.60 0.03 64.22 19.92 MaxBCG,WHL12
63 339.6037 0.4290 0.1476 0.1199 15.58 0.07 13.95 0.03 36.79 10.00 GMBCG
64 339.6763 -0.4495 0.1737 0.1276 15.82 0.09 13.50 0.03 44.67 10.00 New
65 339.7389 0.9962 0.1241 0.1389 15.87 0.10 13.86 0.03 41.59 13.50 New
Table 1The 302 identified Cluster Candidates in the Stripe 82
ID R.A. Decl. Note
(deg) (deg) (mag) (mag)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
66 339.7720 0.6534 0.2375 0.2090 15.60 13.76 0.03 54.20 7.67 MaxBCG,Geach,WHL12
67 339.9143 1.1757 0.1641 0.1433 15.70 0.07 13.86 0.03 45.42 10.92 Geach,WHL12
68 340.6530 0.8837 0.1222 0.1286 15.65 0.10 13.92 0.04 50.59 16.67 New
69 340.8411 0.3386 0.1089 0.0593 15.78 0.10 13.97 0.04 46.78 17.08 WHL12
70 341.1638 0.5700 0.1137 0.1061 15.02 0.08 13.23 0.02 44.77 15.75 New
71 341.7559 0.9144 0.1793 15.81 0.10 13.80 0.03 34.92 7.50 MaxBCG,Geach
72 342.0809 -0.6117 0.2099 0.2123 15.90 0.08 13.70 0.03 46.02 7.92 GMBCG,AMF,WHL12
73 342.1753 0.9131 0.1359 15.13 0.08 13.15 0.03 38.73 11.50 MaxBCG,AMF
74 342.5280 0.8538 0.1927 0.1743 15.68 0.09 13.56 0.03 47.87 9.33 MaxBCG,GMBCG,AMF,Geach,WHL12
75 342.7946 -0.7928 0.2365 0.2142 15.92 0.10 13.89 0.03 38.59 5.50 Geach,WHL12
76 342.9160 1.1677 0.1388 0.0873 15.65 0.09 13.54 0.03 30.98 9.00 New
77 343.9557 0.5725 0.1910 0.1786 15.85 0.09 13.77 0.03 35.07 6.92 New
78 344.0618 -0.5811 0.1032 0.1100 15.93 0.11 13.95 0.03 81.27 31.00 Abell,MaxBCG,GMBCG,AMF,Geach,WHL12
79 344.1515 -0.4658 0.1469 0.1083 15.55 0.09 13.43 0.03 74.41 20.33 Abell,MaxBCG,GMBCG,AMF,Geach,WHL12
80 344.3402 -1.1362 0.1792 15.82 0.13 13.48 0.03 38.00 8.17 MaxBCG,Geach,WHL12
81 344.5970 0.2678 0.1291 0.1542 15.89 0.09 13.85 0.03 57.84 18.08 MaxBCG,WHL12
82 344.6125 -0.1018 0.1872 0.1810 15.72 0.09 13.74 0.03 54.62 11.08 MaxBCG,Geach
83 344.6595 0.5849 0.1252 0.1563 15.67 0.09 13.48 0.03 32.60 10.50 New
84 344.7387 1.2057 0.1085 0.1158 15.38 0.09 13.51 0.03 47.80 17.50 New
85 345.0132 1.1510 0.1304 0.1171 15.73 0.08 13.67 0.03 40.63 12.58 New
86 345.0288 0.2221 0.1874 15.62 0.12 13.03 0.02 62.11 12.58 GMBCG,AMF,Geach,WHL12
87 345.0460 0.3640 0.2248 0.2282 15.70 0.11 13.50 0.03 35.00 5.42 WHL12
88 345.5182 0.2212 0.1293 15.79 0.10 13.76 0.03 33.39 10.42 MaxBCG,GMBCG,Geach,WHL12
89 345.9451 0.7804 0.1566 0.1547 15.84 0.11 13.60 0.03 39.66 10.08 MaxBCG
90 348.1483 0.1520 0.1260 0.1174 15.03 0.08 13.09 0.03 44.52 14.25 MaxBCG,Geach,WHL12
91 350.2303 0.5441 0.2067 0.1873 15.73 0.09 13.71 0.03 62.91 11.08 MaxBCG,Geach,WHL12
92 350.6064 1.0693 0.1396 0.1194 15.09 0.08 13.32 0.04 30.30 8.75 CE,MaxBCG,AMF,Geach,WHL12
93 350.7556 0.8997 0.1269 0.1205 15.21 0.07 13.39 0.03 41.43 13.17 MaxBCG,AMF,WHL12
94 351.0899 0.3193 0.1735 0.1495 15.11 0.08 12.99 0.03 88.83 19.92 Abell,CE,MaxBCG,GMBCG,AMF,Geach,WHL12
95 351.1997 0.9442 0.1038 0.1185 15.22 0.08 13.30 0.03 30.94 11.75 CE,WHL12
96 354.4262 0.3038 0.1207 0.1196 15.17 0.07 13.36 0.03 77.26 25.75 Abell
97 355.0894 0.2696 0.1447 0.1332 15.38 0.09 13.26 0.02 32.41 9.00 CE
98 355.2489 0.0817 0.1748 0.1848 15.66 0.15 12.81 0.03 119.64 26.58 Abell,CE,MaxBCG,GMBCG,AMF,Geach,WHL12
99 355.9156 0.4243 0.2500 0.1859 15.66 0.07 13.41 0.02 50.10 6.50 New
100 356.0726 -0.8548 0.2607 0.1805 15.87 0.08 13.91 0.03 33.87 4.08 New
101 356.5196 -0.1857 0.2818 0.2665 16.45 0.14 13.98 0.03 48.76 5.08 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
102 356.5763 0.9610 0.1355 0.1324 16.06 0.12 13.89 0.03 32.48 9.67 Geach,WHL12
103 356.8651 -0.1538 0.2681 0.2639 16.63 0.16 14.02 0.03 35.66 4.08 CE,GMBCG,AMF,Geach,WHL12
104 358.7088 -0.1407 0.1808 0.1966 15.82 0.08 13.82 0.03 36.48 7.75 WHL12
105 359.8242 0.3167 0.1181 0.1101 16.01 0.10 13.72 0.03 31.60 10.75 New
106 0.1008 -1.2457 0.1562 0.1618 15.26 0.07 13.21 0.03 32.69 8.33 New
107 0.2157 -1.1984 0.2170 0.1972 15.66 0.09 13.68 0.03 30.55 5.00 New
108 0.3598 -0.0288 0.2669 0.2479 16.21 0.12 13.69 0.03 49.82 5.75 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
109 1.1300 -1.1274 0.1768 0.1788 15.82 0.08 13.96 0.03 35.78 7.83 New
110 1.8501 -0.7548 0.2325 0.1866 15.94 0.09 14.02 0.03 51.15 7.50 CE,Geach
111 1.9482 -0.7442 0.1522 0.1070 15.67 0.08 13.44 0.03 34.92 9.17 WHL12
112 2.1160 -0.0048 0.1216 0.1585 15.45 0.07 13.38 0.03 33.75 11.17 New
113 2.4194 0.4251 0.1904 0.1878 15.74 0.09 13.64 0.03 35.32 7.00 CE,Geach,WHL12
114 3.0125 -1.0070 0.1459 0.0848 15.71 0.10 13.62 0.03 33.60 9.25 New
115 3.1982 0.7877 0.1581 0.1484 15.60 0.10 13.75 0.04 40.10 10.08 MaxBCG,WHL12
116 3.2122 0.2891 0.1430 0.1509 16.03 0.10 14.17 0.04 47.98 13.50 CE,MaxBCG,GMBCG,AMF,WHL12
117 3.3711 0.6735 0.1006 0.0843 14.98 0.05 13.38 0.02 34.88 13.58 CE
118 4.1540 -0.5023 0.1393 0.1402 15.40 0.08 13.76 0.03 44.66 12.92 CE
119 4.2262 -1.0625 0.2098 0.1943 15.43 0.08 13.49 0.03 30.02 5.17 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
120 4.2529 -1.2286 0.1536 0.1617 15.54 0.08 13.61 0.03 47.79 12.42 GMBCG,AMF,WHL12
121 4.4067 -0.8784 0.2306 0.2124 16.42 0.15 14.23 0.03 95.39 14.17 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
122 4.6355 -0.7675 0.2102 0.1924 15.85 0.09 13.75 0.03 48.02 8.25 CE,MaxBCG,GMBCG,Geach,WHL12
123 5.0673 0.0794 0.2409 0.2124 15.21 0.06 13.62 0.06 154.31 21.33 MaxBCG,GMBCG,AMF,Geach,WHL12
124 5.0890 -0.2531 0.2436 0.2100 15.75 0.09 13.71 0.03 70.66 9.58 MaxBCG,AMF,Geach,WHL12
125 5.1726 -1.1764 0.1989 0.1950 15.83 0.10 13.80 0.03 37.14 6.92 MaxBCG,Geach,WHL12
126 5.2040 0.1822 0.2405 0.2139 16.31 0.13 13.80 0.03 107.68 14.92 MaxBCG,GMBCG,WHL12
127 5.3191 -0.8368 0.1115 0.1075 15.40 0.08 13.61 0.03 117.18 41.92 Abell,CE,MaxBCG,GMBCG,Geach,WHL12
128 5.3476 -0.8259 0.1797 0.1675 15.40 0.09 13.39 0.03 121.72 26.08 CE,MaxBCG,GMBCG,AMF,Geach
129 5.6779 -0.6892 0.1867 0.1625 15.74 0.07 13.99 0.03 37.24 7.58 MaxBCG,Geach,WHL12
130 5.7616 -0.1367 0.1726 0.1538 15.90 0.11 13.91 0.03 107.41 24.25 Abell,CE,MaxBCG,AMF,Geach,WHL12
Table 1continued
ID R.A. Decl. Note
(deg) (deg) (mag) (mag)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
131 6.1235 -1.0774 0.1311 0.1387 15.99 0.12 14.34 0.05 30.58 9.42 Geach
132 6.3241 -0.7247 0.1511 0.1627 15.78 0.11 13.65 0.03 30.51 8.08 CE,MaxBCG,GMBCG,Geach,WHL12
133 6.6855 1.2357 0.1673 0.1518 15.58 0.10 13.52 0.03 49.33 11.58 Geach,WHL12
134 7.1900 -0.0595 0.1761 0.2131 16.01 0.12 14.29 0.05 52.29 11.50 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
135 7.2203 -0.2431 0.1504 0.1115 15.98 0.12 13.48 0.03 57.92 15.42 CE
136 7.2757 0.8811 0.1131 0.1255 15.36 0.09 13.39 0.03 30.65 10.83 New
137 7.4465 0.4922 0.2091 0.1921 15.91 0.09 13.80 0.03 48.12 8.33 WHL12
138 8.0469 -0.6669 0.2201 0.2148 16.08 0.10 13.85 0.03 79.63 12.75 CE,MaxBCG,AMF,Geach,WHL12
139 8.5832 0.8158 0.2035 0.1893 16.23 0.12 13.64 0.03 96.65 17.42 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
140 8.7574 -1.2049 0.1897 0.2118 15.94 0.10 13.71 0.03 59.40 11.83 CE,Geach,WHL12
141 8.7992 0.7300 0.2688 0.2620 16.47 0.14 13.98 0.03 49.00 5.58 CE,GMBCG,Geach,WHL12
142 8.8420 1.0672 0.2101 0.1914 15.83 0.09 13.78 0.03 31.98 5.50 Geach,WHL12
143 9.2985 0.0967 0.2260 0.2555 16.44 0.19 13.71 0.03 83.61 12.83 Geach,WHL12
144 9.6975 -1.1918 0.1954 0.2067 15.93 0.08 14.00 0.03 49.31 9.42 CE,WHL12
145 9.7217 -0.2841 0.1858 0.1820 15.86 0.10 13.65 0.03 47.97 9.83 CE
146 9.9280 0.6277 0.1926 0.1462 15.76 0.08 13.84 0.03 30.35 5.92 New
147 9.9306 -0.9176 0.1072 0.1076 15.95 0.10 13.80 0.03 43.49 16.08 CE,WHL12
148 10.8143 0.2296 0.2117 0.2152 15.97 0.11 14.18 0.03 41.65 7.08 MaxBCG,GMBCG
149 10.8270 -0.3129 0.1545 0.1525 15.15 0.08 13.02 0.02 37.77 9.75 CE,Geach
150 10.8951 0.1760 0.1693 0.1519 15.43 0.08 13.57 0.03 86.85 20.08 Geach
151 10.8962 1.0196 0.2164 0.1957 15.91 0.14 13.63 0.03 56.77 9.33 CE,GMBCG,AMF,Geach,WHL12
152 11.0052 0.1145 0.1869 0.2171 16.19 0.14 13.78 0.04 81.20 16.50 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
153 11.0195 1.0314 0.1160 0.1117 15.43 0.09 12.91 0.02 43.90 15.17 Geach,WHL12
154 11.0375 1.1917 0.1478 0.1191 15.76 0.11 13.73 0.04 46.37 12.58 WHL12
155 11.1551 -0.9223 0.2242 0.2006 15.95 0.12 13.80 0.03 39.69 6.17 CE,MaxBCG,GMBCG,Geach,WHL12
156 11.3335 0.7793 0.1466 0.1109 16.13 0.13 14.20 0.05 34.97 9.58 New
157 11.3770 -0.7964 0.1684 0.1472 15.10 0.08 13.19 0.03 47.26 11.00 Abell,CE,MaxBCG,GMBCG,Geach,WHL12
158 11.5601 0.0004 0.1399 0.1117 15.88 0.11 14.00 0.03 97.81 28.17 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
159 11.5934 -0.1551 0.2373 0.2185 16.15 0.13 13.67 0.03 61.17 8.67 CE,MaxBCG,Geach,WHL12
160 11.8588 -0.9482 0.1523 0.1768 15.86 0.08 14.02 0.03 79.39 20.83 Abell,CE
161 12.9848 -1.0960 0.1290 0.1342 15.20 0.09 13.24 0.03 35.70 11.17 MaxBCG,AMF,WHL12
162 13.4089 0.9207 0.2534 0.2851 16.17 0.14 13.72 0.03 61.19 7.75 CE,MaxBCG,AMF,Geach,WHL12
163 13.4427 -0.7802 0.1241 0.1376 15.39 0.10 13.17 0.03 64.17 20.83 Abell,CE,GMBCG,Geach,WHL12
164 13.8141 -0.3482 0.1635 0.1462 15.44 0.07 13.65 0.03 51.77 12.50 CE,MaxBCG,GMBCG,Geach,WHL12
165 14.3250 0.0257 0.1912 0.1935 15.75 0.11 13.59 0.03 54.97 10.83 CE,Geach,WHL12
166 15.2043 -0.4221 0.2696 0.2022 15.86 0.09 13.81 0.03 60.31 6.83 New
167 15.2281 -1.1552 0.1412 15.00 9.99 13.90 0.03 47.60 13.58 New
168 15.3084 0.5743 0.2113 0.1994 15.63 0.09 13.52 0.03 70.42 12.00 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
169 15.3301 -0.0553 0.1856 0.1935 15.47 0.09 13.76 0.05 56.85 11.67 CE
170 15.3609 -0.0636 0.1136 0.1078 14.90 0.08 12.80 0.02 48.06 16.92 Abell,CE,Geach,WHL12
171 15.3715 -0.2619 0.2234 0.1929 15.71 0.09 13.75 0.03 36.26 5.67 WHL12
172 15.3876 0.5376 0.1114 0.1176 15.38 0.09 13.61 0.03 35.13 12.58 WHL12
173 15.4146 -0.2248 0.1290 0.1111 15.56 0.07 13.78 0.03 50.59 15.83 Abell,CE,WHL12
174 15.4679 0.6898 0.1292 0.1456 15.94 0.09 13.98 0.03 30.16 9.42 CE,WHL12
175 15.6797 1.1362 0.1546 0.1440 15.41 0.10 13.03 0.02 65.92 17.00 CE,MaxBCG,Geach,WHL12
176 15.7192 0.2479 0.2094 0.2047 15.79 0.10 13.87 0.03 61.22 10.58 CE,Geach,WHL12
177 16.0185 -0.4345 0.2879 0.2790 16.04 0.10 13.79 0.03 46.72 4.67 CE,MaxBCG,GMBCG,Geach,WHL12
178 16.2306 0.0602 0.2903 0.2721 16.24 0.12 13.79 0.03 86.44 8.50 CE,MaxBCG,GMBCG,Geach,WHL12
179 16.6342 0.6310 0.1578 0.1447 16.13 0.12 14.01 0.03 38.73 9.75 WHL12
180 16.8165 0.6614 0.1496 0.1541 15.55 0.08 13.64 0.03 37.97 10.17 CE
181 16.8618 0.1470 0.2597 0.2515 16.11 0.11 13.99 0.03 46.03 5.58 CE,MaxBCG,AMF,Geach,WHL12
182 16.9189 1.0481 0.1483 0.1553 15.52 0.10 13.49 0.03 31.44 8.50 WHL12
183 17.3901 -0.8986 0.2063 0.1737 15.45 0.08 13.51 0.03 59.87 10.58 CE,Geach,WHL12
184 17.4051 -0.9297 0.1210 0.0882 16.16 0.12 13.91 0.04 59.65 19.83 New
185 17.6656 1.0666 0.1926 0.1764 15.44 0.08 13.61 0.03 44.86 8.75 CE,MaxBCG,AMF,WHL12
186 17.9198 -0.7625 0.1116 0.1318 15.79 0.11 13.90 0.03 43.14 15.42 Geach,WHL12
187 17.9535 -0.0181 0.2379 0.2538 15.89 0.12 13.46 0.03 97.41 13.75 CE,MaxBCG,GMBCG,Geach,WHL12
188 18.1542 -0.6651 0.2357 0.2467 15.85 0.09 13.79 0.03 52.88 7.58 MaxBCG,Geach
189 18.2290 1.0638 0.1416 0.1333 15.62 0.07 13.81 0.03 34.01 9.67 New
190 18.2797 -0.0010 0.2128 0.2156 15.99 0.10 13.84 0.03 30.13 5.08 Geach,WHL12
191 18.5621 -0.9125 0.2074 0.1835 15.56 0.08 13.58 0.03 55.63 9.75 CE,MaxBCG,GMBCG,Geach,WHL12
192 18.6568 -0.8458 0.2023 0.1820 15.94 0.09 13.98 0.03 61.46 11.17 GMBCG,AMF,WHL12
193 18.8958 -0.4914 0.1554 0.1828 15.98 0.11 13.87 0.04 35.77 9.17 Geach,WHL12
194 19.1019 -0.1334 0.1943 0.1766 15.45 0.09 13.39 0.03 45.84 8.83 CE,MaxBCG,Geach,WHL12
195 19.4654 -1.2269 0.2377 0.2171 15.97 0.10 13.99 0.03 37.13 5.25 Geach,WHL12
Table 1continued
ID R.A. Decl. Note
(deg) (deg) (mag) (mag)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
196 19.7274 -1.0984 0.1276 0.1216 15.02 0.07 13.18 0.03 35.83 11.33 New
197 19.7734 -1.2336 0.1260 0.1220 15.21 0.08 13.45 0.05 55.45 17.75 New
198 19.8598 -0.7436 0.2421 0.2172 15.68 0.08 13.66 0.03 39.56 5.42 CE,MaxBCG,Geach,WHL12
199 19.8798 -1.1572 0.2036 0.1860 16.07 0.11 14.10 0.03 74.52 13.42 CE,Geach,WHL12
200 20.1750 -0.6050 0.1124 0.0938 15.88 0.10 13.84 0.03 37.53 13.33 WHL12
201 20.4632 -0.1918 0.1979 0.2001 15.69 0.10 13.58 0.03 31.96 6.00 CE,AMF,Geach,WHL12
202 20.4820 0.0662 0.1347 0.0774 15.24 0.09 13.20 0.03 32.29 9.67 New
203 20.5108 0.3345 0.1551 0.1745 15.53 0.11 13.17 0.03 80.74 20.75 Abell,CE,MaxBCG,GMBCG,AMF,Geach,WHL12
204 20.6525 -0.8140 0.1797 0.1726 15.65 0.10 13.38 0.03 63.38 13.58 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
205 20.8281 1.1489 0.1298 0.1076 15.80 0.07 14.07 0.03 35.12 10.92 New
206 21.0764 -1.2405 0.1728 0.1725 15.56 0.08 13.43 0.02 51.02 11.50 GMBCG,Geach,WHL12
207 21.2476 -0.8441 0.1627 0.1707 15.68 0.08 13.95 0.03 32.61 7.92 New
208 21.5269 1.2269 0.1925 0.2093 15.48 9.99 14.56 0.05 35.45 6.92 CE,AMF,Geach,WHL12
209 21.7496 -0.7839 0.1807 0.1647 15.66 0.08 13.76 0.03 31.37 6.67 New
210 23.2450 0.9407 0.1250 0.1226 15.38 0.09 13.48 0.03 42.62 13.75 CE,MaxBCG,Geach,WHL12
211 23.7048 -0.6121 0.1557 0.0838 15.10 0.06 12.99 0.03 38.10 9.75 CE,GMBCG,AMF,Geach,WHL12
212 23.7313 0.3878 0.1592 0.1535 15.74 0.11 13.66 0.03 40.13 10.00 MaxBCG,AMF,Geach,WHL12
213 23.7849 -1.1513 0.1649 0.1555 15.73 0.08 13.78 0.03 44.98 10.75 CE,GMBCG,Geach,WHL12
214 23.8864 0.3775 0.1486 0.1523 15.66 0.10 13.77 0.03 34.93 9.42 Geach
215 23.9820 0.5584 0.1160 0.1351 15.33 0.07 13.58 0.03 33.28 11.50 New
216 24.3334 0.9561 0.1780 0.1976 15.85 0.09 13.74 0.03 46.46 10.08 New
217 24.7484 -0.8523 0.1202 0.1179 15.53 0.09 13.61 0.03 44.34 14.83 New
218 24.8218 0.3343 0.2212 0.1966 15.97 0.12 13.89 0.03 36.21 5.75 New
219 25.2334 0.1560 0.1758 0.1677 15.58 0.09 13.54 0.03 51.02 11.25 CE,Geach,WHL12
220 25.3794 -0.9283 0.1596 0.1547 15.60 0.08 13.86 0.03 36.89 9.17 CE,Geach
221 25.4900 -1.1074 0.1653 0.1560 15.20 0.09 13.15 0.02 46.18 11.00 CE,MaxBCG,AMF,Geach,WHL12
222 25.6666 0.1151 0.1120 0.1010 15.44 0.06 13.77 0.03 33.44 11.92 New
223 25.6991 0.8671 0.1118 0.1015 15.61 0.09 13.52 0.03 31.76 11.33 New
224 25.7110 0.7474 0.2027 0.1962 15.81 0.10 13.91 0.03 35.41 6.42 CE,WHL12
225 26.2515 -0.8150 0.2335 0.1968 15.95 0.10 13.93 0.03 50.36 7.33 CE,WHL12
226 26.3010 -0.0931 0.2044 0.1989 15.48 0.08 13.41 0.03 34.91 6.25 CE,GMBCG,Geach,WHL12
227 26.6881 -0.6752 0.1002 0.0823 15.51 0.08 13.65 0.03 44.83 17.50 AMF,WHL12
228 27.0689 0.3583 0.1826 0.2061 13.92 0.03 50.05 10.50 CE
229 27.7459 -1.0235 0.1752 0.1583 15.93 0.10 13.85 0.03 36.90 8.17 Geach
230 27.8014 -0.9955 0.2466 0.2428 16.07 0.09 13.74 0.03 57.76 7.67 CE,WHL12
231 28.1525 -0.2279 0.1746 0.1768 15.39 0.08 13.43 0.02 32.96 7.33 New
232 28.1750 1.0072 0.2132 0.2297 16.07 0.15 13.82 0.04 67.37 11.33 Abell,CE,MaxBCG,GMBCG,AMF,Geach,WHL12
233 28.1897 -0.3932 0.1534 0.1770 15.68 0.09 13.81 0.03 43.52 11.33 New
234 28.2245 -0.8960 0.1141 0.1192 15.17 0.09 13.27 0.03 50.87 17.83 New
235 28.2534 -0.5705 0.1317 0.1331 16.04 0.12 13.87 0.03 71.54 21.92 CE,MaxBCG,WHL12
236 28.3570 -1.1600 0.2138 0.2416 15.85 0.10 13.59 0.03 158.35 26.50 Abell,CE,MaxBCG,GMBCG,AMF,Geach,WHL12
237 29.1181 1.0605 0.1719 0.1826 15.64 0.08 13.70 0.03 140.27 31.83 New
238 29.3485 0.4178 0.1462 0.1350 15.07 0.07 13.18 0.02 32.15 8.83 CE,MaxBCG,GMBCG,Geach,WHL12
239 29.4308 -0.1504 0.1246 0.1349 15.85 0.10 13.95 0.04 38.89 12.58 MaxBCG,GMBCG,Geach,WHL12
240 29.4772 -0.6338 0.1914 0.1884 15.97 0.08 13.95 0.03 91.52 18.00 Abell,CE,GMBCG,AMF,Geach,WHL12
241 29.4970 -0.7244 0.2162 0.1865 15.78 0.09 13.72 0.03 86.56 14.25 Abell,CE,MaxBCG,GMBCG,AMF,Geach,WHL12
242 29.7756 0.8355 0.1443 0.1354 15.58 0.08 13.73 0.03 32.01 8.92 Geach,WHL12
243 29.8175 -0.1096 0.1626 0.1550 15.61 0.07 13.84 0.03 46.98 11.42 CE,MaxBCG,Geach,WHL12
244 30.0376 -0.8842 0.2128 0.2089 16.18 0.10 13.69 0.03 38.55 6.50 WHL12
245 30.3347 -0.4569 0.1619 0.1597 15.45 0.08 13.47 0.02 33.07 8.08 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
246 30.5012 -0.4818 0.1460 0.1589 15.71 0.09 13.78 0.03 40.60 11.17 Geach
247 31.0914 -0.8329 0.1526 0.1367 15.54 0.08 13.63 0.03 30.24 7.92 New
248 31.1257 0.3046 0.2324 0.1726 16.25 0.15 13.75 0.03 64.19 9.42 Abell,CE,MaxBCG,AMF,Geach,WHL12
249 31.1304 0.2282 0.1490 0.1631 16.26 0.15 13.88 0.04 33.76 9.08 CE,MaxBCG,Geach,WHL12
250 31.1345 -1.0540 0.1699 0.1617 16.23 0.14 13.82 0.03 43.44 10.00 CE,Geach
251 31.3167 0.0574 0.1331 0.1132 15.75 0.09 13.88 0.03 49.47 15.00 New
252 31.3794 0.1897 0.1826 0.1716 15.37 0.09 13.35 0.02 30.17 6.33 CE,MaxBCG,AMF,Geach,WHL12
253 31.4742 0.0331 0.1821 0.1735 15.42 0.07 13.30 0.03 63.33 13.33 Geach,WHL12
254 32.4464 -0.1118 0.1639 0.1521 15.54 0.09 13.52 0.03 36.70 8.83 CE,Geach,WHL12
255 32.5758 -1.0184 0.1842 0.1709 15.66 0.08 13.75 0.03 79.58 16.50 Abell,CE,MaxBCG,AMF,Geach,WHL12
256 32.7266 -1.1567 0.1432 0.1760 15.86 0.15 13.68 0.03 52.52 14.75 CE,Geach,WHL12
257 32.8846 0.1167 0.2268 0.2122 16.57 0.14 14.33 0.03 40.96 6.25 CE,MaxBCG,GMBCG,Geach,WHL12
258 33.0959 -0.4210 0.1177 0.1015 15.37 0.08 13.39 0.02 32.49 11.08 Geach
259 33.1749 0.4748 0.2069 0.2015 15.91 0.11 13.84 0.03 58.30 10.25 CE,MaxBCG,AMF,Geach,WHL12
260 33.4638 0.4673 0.1940 0.1820 15.79 0.11 13.66 0.03 44.43 8.58 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
Table 1continued
ID R.A. Decl. Note
(deg) (deg) (mag) (mag)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
261 33.4849 0.5268 0.2567 0.2126 15.91 0.10 13.53 0.03 94.30 11.67 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
262 33.5527 -0.1887 0.1381 0.1408 15.59 0.11 13.69 0.04 57.35 16.75 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
263 33.7983 1.0014 0.1095 0.1223 15.18 0.08 13.23 0.02 43.37 15.75 CE
264 33.7986 0.9053 0.1719 0.1219 15.96 0.09 14.05 0.03 74.92 17.00 New
265 34.6748 0.1138 0.2509 0.2719 16.30 0.16 13.66 0.03 71.14 9.17 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
266 36.3090 -1.0862 0.1841 0.1694 15.70 0.10 13.83 0.03 31.32 6.50 CE,GMBCG,Geach,WHL12
267 36.7314 -1.0641 0.1227 0.0967 15.63 0.10 13.70 0.03 47.97 15.75 New
268 37.3373 0.5937 0.1108 0.1316 15.12 0.08 13.20 0.03 51.22 18.42 WHL12
269 37.7454 1.1128 0.1787 0.1495 15.61 0.09 13.52 0.03 49.79 10.75 CE
270 38.4721 0.0777 0.1856 0.1857 15.30 0.09 13.43 0.04 42.63 8.75 CE,Geach,WHL12
271 40.2131 -0.9324 0.2561 0.2396 16.31 0.14 13.78 0.03 40.21 5.00 CE,MaxBCG,AMF,Geach,WHL12
272 40.6842 -0.9660 0.1255 0.1797 15.64 0.09 13.36 0.03 31.91 10.25 MaxBCG
273 40.8013 -1.0201 0.2595 0.2386 15.86 0.11 13.67 0.03 90.60 11.00 CE,GMBCG,AMF,Geach,WHL12
274 41.4178 -0.7229 0.2143 0.1821 15.65 0.09 13.54 0.03 51.98 8.67 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
275 41.8485 0.1005 0.1944 0.1810 15.33 0.07 13.29 0.03 35.49 6.83 Geach,WHL12
276 42.3182 -0.7739 0.1493 0.1376 15.13 0.07 13.28 0.02 45.02 12.08 WHL12
277 42.3603 0.0250 0.1821 0.1503 15.55 0.10 13.44 0.02 35.63 7.50 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
278 42.4043 0.2698 0.1839 0.1770 15.95 0.10 13.59 0.03 30.91 6.42 New
279 42.9448 -0.1646 0.2133 0.1832 15.62 0.09 13.66 0.03 34.69 5.83 Geach,WHL12
280 43.1920 1.0847 0.1325 0.1374 15.42 0.09 13.27 0.02 81.28 24.75 CE,Geach,WHL12
281 44.7325 0.2605 0.1181 0.1277 15.53 0.08 13.68 0.03 51.21 17.42 WHL12
282 44.8857 0.2318 0.1828 0.1933 15.30 0.09 12.97 0.02 46.93 9.83 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
283 45.6562 -0.6689 0.2207 0.1900 16.23 0.13 14.01 0.03 39.23 6.25 CE,Geach,WHL12
284 45.7460 -0.1935 0.1656 0.1571 15.48 0.08 13.60 0.03 61.70 14.67 CE,MaxBCG,AMF,Geach,WHL12
285 46.0997 0.8304 0.1099 0.1351 15.92 0.10 13.78 0.03 32.91 11.92 New
286 46.1983 -0.9336 0.1550 0.1626 15.72 0.08 13.84 0.03 32.73 8.42 New
287 46.6213 0.9996 0.1493 0.1536 15.59 0.08 13.54 0.02 30.75 8.25 CE,Geach
288 47.2143 -1.1733 0.1231 0.1262 15.50 0.08 13.65 0.02 31.57 10.33 Geach
289 48.3834 0.9172 0.1537 0.1425 16.16 0.11 13.78 0.03 34.66 9.00 CE,WHL12
290 48.5910 -0.5879 0.1228 0.1167 15.66 0.08 13.85 0.03 67.06 22.00 MaxBCG,AMF,Geach,WHL12
291 48.6184 0.2598 0.1473 0.1294 15.81 0.09 13.85 0.03 46.17 12.58 CE,Geach,WHL12
292 49.3038 0.1131 0.1230 0.1147 15.06 0.08 13.20 0.03 35.88 11.75 WHL12
293 49.7007 0.6802 0.2113 0.1746 16.37 0.12 14.01 0.03 35.21 6.00 CE,WHL12
294 50.1673 -1.2419 0.1836 0.1812 16.03 0.10 13.82 0.03 30.83 6.42 CE,Geach,WHL12
295 50.5087 1.1235 0.2324 0.1489 15.33 9.99 13.71 0.03 32.91 4.83 CE,Geach
296 50.7242 0.7819 0.1220 0.1487 15.73 0.09 14.05 0.04 33.84 11.17 CE,Geach
297 52.9716 -0.7835 0.1547 0.1368 15.34 0.07 13.34 0.02 43.00 11.08 CE,GMBCG,AMF,Geach,WHL12
298 53.5507 1.1746 0.1562 0.1642 15.63 0.13 13.82 0.05 49.72 12.67 CE,Geach
299 53.6419 -1.1646 0.1409 0.1389 15.43 0.10 13.20 0.03 73.76 21.08 CE,GMBCG,Geach,WHL12
300 54.9725 -0.2834 0.1392 0.1274 15.44 0.11 13.04 0.03 43.17 12.50 WHL12
301 55.6778 -0.2856 0.2795 0.3072 16.60 0.16 13.46 0.03 58.30 6.17 CE,MaxBCG,GMBCG,AMF,Geach,WHL12
302 58.2873 -0.8459 0.1212 0.1319 15.59 0.09 13.77 0.03 34.11 11.33 WHL12

Note. Column(1): the sequence number; Column(2): R.A. (J2000) of cluster center in degree; Column(3): Decl. (J2000) of cluster center in degree; Column(4): photometric redshift of cluster with a typical uncertainty of 0.022; Column(5): spectroscopic redshift of central galaxy with a typical uncertainty of ; Column(6): -band magnitude of centeral galaxy; Column(7): -band magnitude of centeral galaxy; Column(8): scaled richness of cluster; Column(9): measured richness of cluster. Column(10): Notes for known clusters in other catalogs: Abell (Abell 1958; Abell et al. 1989); CE (Goto et al. 2002); MaxBCG (Koester et al. 2007); GMBCG (Hao et al. 2010); AMF (Szabo et al. 2011); Geach (Geach et al. 2011), WHL12 (Wen et al. 2012); newly identified clusters are labelled “New”.

Table 1continued
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
305107
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description