All (\infty,1)-toposes have strict univalent universes

All -toposes have strict univalent universes

Michael Shulman
July 29, 2019
Abstract.

We prove the conjecture that any Grothendieck -topos can be presented by a Quillen model category that interprets homotopy type theory with strict univalent universes. Thus, homotopy type theory can be used as a formal language for reasoning internally to -toposes, just as higher-order logic is used for 1-toposes.

As part of the proof, we give a new, more explicit, characterization of the fibrations in injective model structures on presheaf categories. In particular, we show that they generalize the coflexible algebras of 2-monad theory.

This material is based on research sponsored by The United States Air Force Research Laboratory under agreement number FA9550-15-1-0053. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the United States Air Force Research Laboratory, the U.S. Government, or Carnegie Mellon University.
\fxusetheme

color \newaliascntcorthm \aliascntresetthecor \newaliascntpropthm \aliascntresettheprop \newaliascntlemthm \aliascntresetthelem \newaliascntschthm \aliascntresetthesch \newaliascntassumethm \aliascntresettheassume \newaliascntclaimthm \aliascntresettheclaim \newaliascntconjthm \aliascntresettheconj \newaliascnthypthm \aliascntresetthehyp \newaliascntdefnthm \aliascntresetthedefn \newaliascntnotnthm \aliascntresetthenotn \newaliascntrmkthm \aliascntresetthermk \newaliascntegthm \aliascntresettheeg \newaliascntegsthm \aliascntresettheegs \newaliascntexthm \aliascntresettheex \newaliascntcegthm \aliascntresettheceg \setitemize[1]leftmargin=2em \setenumerate[1]leftmargin=* \fxsetupfinal \includeversionconcise \excludeversionverbose

intro

2cat

nfs relpres universes ttmt

bar injmodel

intloc lexloc

summary

coherence

References

  • [ABC17] Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuan-Bang Hou (Favonia), Robert Harper, and Daniel R. Licata. Cartesian cubical type theory. https://github.com/dlicata335/cart-cube, 2017.
  • [ABFJ17] Mathieu Anel, Georg Biedermann, Eric Finster, and André Joyal. A generalized Blakers–Massey theorem. arXiv:1703.09050, 2017.
  • [ABFJ18] Mathieu Anel, Georg Biedermann, Eric Finster, and André Joyal. Goodwillie’s calculus of functors and higher topos theory. Journal of Topology, 11:1100–1132, 2018. arXiv:1703.09632.
  • [ABFJ19] Mathieu Anel, Georg Biedermann, Eric Finster, and André Joyal. New methods for left exact localisations of topoi. In preparation; slides at http://mathieu.anel.free.fr/mat/doc/Anel-LexLocalizations.pdf, 2019.
  • [ABG08] Matthew Ando, Andrew J. Blumberg, David Gepner, Michael J. Hopkins, and Charles Rezk. Units of ring spectra and thom spectra. arXiv:0810.4535, 2008.
  • [ACK17] Danil Annenkov, Paolo Capriotti, and Nicolai Kraus. Two-level type theory and applications. arXiv:1705.03307, 2017.
  • [AH16] Carlo Angiuli and Robert Harper. Computational higher type theory II: Dependent cubical realizability. arXiv:1606.09638, 2016.
  • [AHH17] Carlo Angiuli, Kuen-Bang Hou, and Robert Harper. Computational higher type theory III: Univalent universes and exact equality. arXiv:1712.01800, 2017.
  • [AHW16] Carlo Angiuli, Robert Harper, and Todd Wilson. Computational higher type theory I: Abstract cubical realizability. arXiv:1604.08873, 2016.
  • [AK11] Peter Arndt and Krzysztof Kapulkin. Homotopy-theoretic models of type theory. In Luke Ong, editor, Typed Lambda Calculi and Applications, volume 6690 of Lecture Notes in Computer Science, pages 45–60. Springer Berlin / Heidelberg, 2011.
  • [AR94] Jiří Adámek and Jiří Rosický. Locally presentable and accessible categories, volume 189 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994.
  • [AW09] Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity types. Math. Proc. Camb. Phil. Soc., 146(45):45–55, 2009.
  • [Awo18] Steve Awodey. Natural models of homotopy type theory. Math. Structures Comput. Sci., 28(2):241–286, 2018. arXiv:1406.3219.
  • [Awo19] Steve Awodey. A Quillen model structure on the category of cartesian cubical sets. In preparation, 2019.
  • [BCH14] Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in cubical sets. In 19th International Conference on Types for Proofs and Programs, volume 26 of LIPIcs. Leibniz Int. Proc. Inform., pages 107–128. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2014.
  • [BCH17] Marc Bezem, Thierry Coquand, and Simon Huber. The univalence axiom in cubical sets. arXiv:1710.10941, 2017.
  • [BdB18] Pedro Boavida de Brito. Segal objects and the Grothendieck construction. In An alpine bouquet of algebraic topology, volume 708 of Contemp. Math., pages 19–44. Amer. Math. Soc., Providence, RI, 2018. arXiv:1605.00706.
  • [Bek00] Tibor Beke. Sheafifiable homotopy model categories. Math. Proc. Cambridge Philos. Soc., 129(3):447–475, 2000.
  • [BF18] Ulrik Buchholtz and Kuen-Bang Hou (Favonia). Cellular cohomology in homotopy type theory. arXiv:1802.02191, 2018.
  • [BG16] John Bourke and Richard Garner. Algebraic weak factorisation systems I: Accessible AWFS. J. Pure Appl. Algebra, 220(1):108–147, 2016.
  • [BKP89] R. Blackwell, G. M. Kelly, and A. J. Power. Two-dimensional monad theory. J. Pure Appl. Algebra, 59(1):1–41, 1989.
  • [BM11] Clemens Berger and Ieke Moerdijk. On an extension of the notion of Reedy category. Mathematische Zeitschrift, 269:977–1004, 2011.
  • [Bor15] Anthony Bordg. On lifting univalence to the equivariant setting. PhD thesis, Université Nice Sophia Antipolis, 2015. arXiv:1512.04083.
  • [Bor19] Anthony Bordg. On a model invariance problem in homotopy type theory. Applied Categorical Structures, Feb 2019.
  • [BR12] T. Beke and J. Rosický. Abstract elementary classes and accessible categories. Ann. Pure Appl. Logic, 163(12):2008–2017, 2012.
  • [BR13] Julia E. Bergner and Charles Rezk. Reedy categories and the -construction. Math. Z., 274(1-2):499–514, 2013.
  • [BR17] Ulrik Buchholtz and Egbert Rijke. The real projective spaces in homotopy type theory. To appear in LICS’17. arXiv:1704.05770, 2017.
  • [Bru16] Guillaume Brunerie. On the homotopy groups of spheres in homotopy type theory. PhD thesis, Université de Nice, 2016. arXiv:1606.05916.
  • [Car86] John Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure and Applied Logic, 32(0):209 – 243, 1986.
  • [Cav15] Evan Cavallo. Synthetic cohomology in homotopy type theory. Master’s thesis, Carnegie Mellon University, 2015. http://www.cs.cmu.edu/~ecavallo/works/thesis15.pdf.
  • [CCHM16] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: a constructive interpretation of the univalence axiom. arXiv:1611.02108, 2016.
  • [CH18] Evan Cavallo and Robert Harper. Computational higher type theory IV: Inductive types. arXiv:1801.01568, 2018.
  • [CHK85] C. Cassidy, M. Hébert, and G. M. Kelly. Reflective subcategories, localizations and factorization systems. J. Austral. Math. Soc. Ser. A, 38(3):287–329, 1985.
  • [CHM18] Thierry Coquand, Simon Huber, and Anders Mörtberg. On higher inductive types in cubical type theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, pages 255–264, New York, NY, USA, 2018. ACM.
  • [CHS19] Thierry Coquand, Simon Huber, and Christian Sattler. Homotopy canonicity for cubical type theory. arXiv:1902.06572, 2019.
  • [Cis02] Denis-Charles Cisinski. Théories homotopiques dans les topos. J. Pure Appl. Algebra, 174:43–82, 2002.
  • [Cis03] Denis-Charles Cisinski. Faisceaux localement asphériques. Preliminary version; http://www.mathematik.uni-regensburg.de/cisinski/mtest2.pdf, 2003.
  • [Cis14] Denis-Charles Cisinski. Univalent universes for elegant models of homotopy types. arXiv:1406.0058, 2014.
  • [CLW93] Aurelio Carboni, Stephen Lack, and R.F.C. Walters. Introduction to extensive and distributive categories. J. Pure Appl. Algebra, 84(2):145–158, 1993.
  • [CM19] Evan Cavallo and Anders Mörtberg. A unifying cartesian cubical type theory. http://www.cs.cmu.edu/~ecavallo/works/unifying-cartesian.pdf, 2019.
  • [Coq18] Thierry Coquand. Canonicity and normalisation for dependent type theory. arXiv:1810.09367, 2018.
  • [CORS18] J. Daniel Christensen, Morgan Opie, Egbert Rijke, and Luis Scoccola. Localization in homotopy type theory. arXiv:1807.04155, 2018.
  • [CP97] Jean-Marc Cordier and Timothy Porter. Homotopy coherent category theory. Transactions of the American Mathematical Society, 349(1):1–54, 1997.
  • [DRØ03] Bjørn Ian Dundas, Oliver Röndigs, and Paul Arne Østvær. Enriched functors and stable homotopy theory. Doc. Math., 8:409–488 (electronic), 2003.
  • [Dug01] Daniel Dugger. Combinatorial model categories have presentations. Advances in Mathematics, 164:177–201, 2001.
  • [Dyb96] Peter Dybjer. Internal type theory. In Selected Papers from the International Workshop on Types for Proofs and Programs, TYPES ’95, pages 120–134, London, UK, UK, 1996. Springer-Verlag.
  • [FFLL16] Kuen-Bang Hou (Favonia), Eric Finster, Daniel Licata, and Peter LeFanu Lumsdaine. A mechanization of the Blakers–Massey connectivity theorem in homotopy type theory. LICS, 2016. arXiv:1605.03227.
  • [Gam10] Nicola Gambino. Weighted limits in simplicial homotopy theory. J. Pure Appl. Algebra, 214(7):1193–1199, 2010.
  • [Gar09] Richard Garner. Understanding the small object argument. Appl. Categ. Structures, 17(3):247–285, 2009. arXiv:0712.0724.
  • [GG08] Nicola Gambino and Richard Garner. The identity type weak factorisation system. Theor. Comput. Sci., 409:94–109, December 2008.
  • [GK17] David Gepner and Joachim Kock. Univalence in locally cartesian closed -categories. Forum Math., 29(3):617–652, 2017. arXiv:1208.1749.
  • [GKR18] Richard Garner, Magdalena Kedziorek, and Emily Riehl. Lifting accessible model structures. arXiv:1802.09889, 2018.
  • [GS17] Nicola Gambino and Christian Sattler. The Frobenius condition, right properness, and uniform fibrations. J. Pure Appl. Algebra, 221(12):3027–3068, 2017.
  • [GT06] Marco Grandis and Walter Tholen. Natural weak factorization systems. Arch. Math. (Brno), 42(4):397–408, 2006.
  • [Hel88] A. Heller. Homotopy theories. Memoirs of the American Mathematical Society, 383, 1988.
  • [Hir03] Philip S. Hirschhorn. Model Categories and their Localizations, volume 99 of Mathematical Surveys and Monographs. American Mathematical Society, 2003.
  • [Hof94] Martin Hofmann. On the interpretation of type theory in locally cartesian closed categories. In Proceedings of Computer Science Logic, Lecture Notes in Computer Science, pages 427–441. Springer, 1994.
  • [Hof97] Martin Hofmann. Syntax and semantics of dependent types. In Semantics and logics of computation (Cambridge, 1995), volume 14 of Publ. Newton Inst., pages 79–130. Cambridge Univ. Press, Cambridge, 1997.
  • [Hor15] Geoffroy Horel. A model structure on internal categories in simplicial sets. Theory Appl. Categ., 30(20):704–750, 2015. arXiv:1403.6873.
  • [Hov99] Mark Hovey. Model Categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, 1999.
  • [Hoy19] Marc Hoyois. Topoi of parametrized objects. Theory Appl. Categ., 34(9):243–248, 2019.
  • [HS98] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford Logic Guides, pages 83–111. Oxford Univ. Press, New York, 1998.
  • [Jac93] Bart Jacobs. Comprehension categories and the semantics of type dependency. Theoret. Comput. Sci., 107(2):169–207, 1993.
  • [Jar96] J. F. Jardine. Boolean localization, in practice. Doc. Math., 1:No. 13, 245–275, 1996.
  • [Jar07] J.F. Jardine. Fields lectures: simplicial presheaves. https://www.uwo.ca/math/faculty/jardine/courses/fields/fields-01.pdf, 2007.
  • [Joh02] Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium: Volumes 1 and 2. Number 43 in Oxford Logic Guides. Oxford Science Publications, 2002.
  • [Joy08] Andre Joyal. Notes on logoi. http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf, 2008.
  • [KL18] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The homotopy theory of type theories. Advances in Mathematics, 337:1–38, 2018. arXiv:1610.00037.
  • [KL19] Chris Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of univalent foundations (after Voevodsky). To appear in Journal of the European Mathematical Society. arXiv:1211.2851, 2019.
  • [KS17] Krzysztof Kapulkin and Karol Szumiło. Internal language of finitely complete -categories. arXiv:1709.09519, 2017.
  • [Lac02] Stephen Lack. Codescent objects and coherence. J. Pure Appl. Algebra, 175(1-3):223–241, 2002. Special volume celebrating the 70th birthday of Professor Max Kelly.
  • [Lac07] Stephen Lack. Homotopy-theoretic aspects of 2-monads. J. Homotopy Relat. Struct., 2(2):229–260, 2007.
  • [Lac09] Stephen Lack. A 2-categories companion. In John C. Baez and J. Peter May, editors, Towards Higher Categories, volume 152 of The IMA Volumes in Mathematics and its Applications, pages 105–192. Springer, 2009. arXiv:math.CT/0702535.
  • [LB13] Daniel R. Licata and Guillaume Brunerie. in homotopy type theory. In Georges Gonthier and Michael Norrish, editors, Certified Programs and Proofs: Third International Conference, CPP 2013, Melbourne, VIC, Australia, December 11-13, 2013, Proceedings, pages 1–16. Springer International Publishing, Cham, 2013. http://dlicata.web.wesleyan.edu/pubs/lb13cpp/lb13cpp.pdf.
  • [LF14] Dan Licata and Eric Finster. Eilenberg–MacLane spaces in homotopy type theory. LICS, 2014. http://dlicata.web.wesleyan.edu/pubs/lf14em/lf14em.pdf.
  • [Low13] Zhen Lin Low. Universes for category theory. arXiv:1304.5227, 2013.
  • [LRV19] Michael Lieberman, Jiří Rosický, and Sebastien Vasey. Internal sizes in -abstract elementary classes. Journal of Pure and Applied Algebra, 2019. arXiv:1708.06782.
  • [LS04] Stephen Lack and Paweł Sobociński. Adhesive categories. In Foundations of software science and computation structures, volume 2987 of Lecture Notes in Comput. Sci., pages 273–288. Springer, Berlin, 2004.
  • [LS06] Stephen Lack and Paweł Sobociński. Toposes are adhesive. In Graph transformations, volume 4178 of Lecture Notes in Comput. Sci., pages 184–198. Springer, Berlin, 2006.
  • [LS13] Daniel R. Licata and Michael Shulman. Calculating the fundamental group of the circle in homotopy type theory. In Logic In Computer Science, 2013.
  • [LS16] Daniel R. Licata and Michael Shulman. Adjoint logic with a 2-category of modes. Logical Foundations of Computer Science, 2016. Available at http://dlicata.web.wesleyan.edu/pubs/ls15adjoint/ls15adjoint.pdf.
  • [LS19] Peter LeFanu Lumsdaine and Michael Shulman. Semantics of higher inductive types. To appear in Mathematical Proceedings of the Cambridge Philosophical Society. arXiv:1705.07088, 2019.
  • [LSR17] Daniel R. Licata, Michael Shulman, and Mitchell Riley. A fibrational framework for substructural and modal logics. Formal Structures for Computation and Deduction, 2017. Available at http://dlicata.web.wesleyan.edu/pubs/lsr17multi/lsr17multi-ex.pdf.
  • [LSR19] Daniel R. Licata, Michael Shulman, and Mitchell Riley. A fibrational framework for substructural and modal dependent type theories. In preparation, 2019.
  • [Lum11] Peter LeFanu Lumsdaine. Model structures from higher inductive types. http://peterlefanulumsdaine.com/research/Lumsdaine-Model-strux-from-HITs.pdf, 2011.
  • [Lur09] Jacob Lurie. Higher topos theory. Number 170 in Annals of Mathematics Studies. Princeton University Press, 2009.
  • [Lur12] Jacob Luriex(mathoverflow.net/users/7721). Compact objects in model categories and -categories. MathOverflow, 2012. http://mathoverflow.net/questions/95179 (version: 2012-04-25).
  • [LW15] Peter LeFanu Lumsdaine and Michael A. Warren. The local universes model: An overlooked coherence construction for dependent type theories. ACM Trans. Comput. Logic, 16(3):23:1–23:31, July 2015. arXiv:1411.1736.
  • [May72] J. Peter May. The geometry of iterated loop spaces. Springer-Verlag, Berlin, 1972. Lectures Notes in Mathematics, Vol. 271.
  • [May75] J. Peter May. Classifying spaces and fibrations. Mem. Amer. Math. Soc., 1(1, 155):xiii+98, 1975.
  • [Mey84] Jean-Pierre Meyer. Bar and cobar constructions, I. Journal of Pure and Applied Algebra, 33:163–207, 1984.
  • [ML75] Per Martin-Löf. An intuitionistic theory of types: predicative part. In Logic Colloquium. North Holland, 1975.
  • [ML84] Per Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.
  • [Mos17] Lyne Moser. Injective and projective model structures on enriched diagram categories. arXiv:1710.11388, 2017.
  • [MP89] Michael Makkai and Robert Paré. Accessible categories: the foundations of categorical model theory, volume 104 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1989.
  • [MP12] J. P. May and K. Ponto. More concise algebraic topology. Chicago lectures in mathematics. University of Chicago Press, 2012.
  • [MR14] M. Makkai and J. Rosický. Cellular categories. J. Pure Appl. Algebra, 218(9):1652–1664, 2014.
  • [MS06] J. P. May and J. Sigurdsson. Parametrized Homotopy Theory, volume 132 of Mathematical Surveys and Monographs. Amer. Math. Soc., 2006.
  • [Pia91] Robert J. Piacenza. Homotopy theory of diagrams and CW-complexes over a category. Canad. J. Math., 43(4):814–824, 1991.
  • [Pup74] Volker Puppe. A remark on “homotopy fibrations”. Manuscripta Math., 12:113–120, 1974.
  • [Qui67] Daniel G. Quillen. Homotopical Algebra, volume 43 of Lecture Notes in Mathematics. Springer-Verlag, 1967.
  • [Ras17] Nima Rasekh. Yoneda lemma for simplicial spaces. arXiv:1711.03160, 2017.
  • [Ras18] Nima Rasekh. A theory of elementary higher toposes. arXiv:1805.03805, 2018.
  • [Rat16] Michael Rathjen. Proof theory of constructive systems: Inductive types and univalence. arXiv:1610.02191, 2016.
  • [Rez98] Charles Rezk. Fibrations and homotopy colimits of simplicial sheaves. arXiv:math/9811038, 1998.
  • [Rez02] Charles Rezk. Every homotopy theory of simplicial algebras admits a proper model. Topology and its Applications, 119(1):65 – 94, 2002.
  • [Rez10] Charles Rezk. Toposes and homotopy toposes. http://www.math.uiuc.edu/~rezk/homotopy-topos-sketch.pdf, 2010.
  • [Rie11] Emily Riehl. Algebraic model structures. New York Journal of Mathematics, 17:173–231, 2011.
  • [Rie14] Emily Riehl. Categorical homotopy theory, volume 24 of New mathematical monographs. Cambridge University Press, 2014.
  • [Ros17] J. Rosický. Accessible model categories. Appl. Categ. Structures, 25(2):187–196, 2017.
  • [RS17] Emily Riehl and Michael Shulman. A type theory for synthetic -categories. Higher structures, 1(1), 2017. arXiv:1705.07442.
  • [RSS01] Charles Rezk, Stefan Schwede, and Brooke Shipley. Simplicial structures on model categories and functors. American Journal of Mathematics, 123(3):551–575, 2001.
  • [RSS17] Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. arXiv:1706.07526, 2017.
  • [RV14] Emily Riehl and Dominic Verity. The theory and practice of Reedy categories. Theory and Applications of Categories, 29(9):256–301, 2014. http://www.tac.mta.ca/tac/volumes/29/9/29-09abs.html.
  • [RV15] Emily Riehl and Dominic Verity. The 2-category theory of quasi-categories. Advances in Mathematics, 280:549–642, 2015.
  • [RV16] Emily Riehl and Dominic Verity. Homotopy coherent adjunctions and the formal theory of monads. Advances in Mathematics, 286(2):802–888, January 2016.
  • [RV19] Emily Riehl and Dominic Verity. Elements of -category theory. In preparation; draft available at http://www.math.jhu.edu/~eriehl/elements.pdf, 2019.
  • [S12] Michael Shulman et al. Exhaustive categories. http://ncatlab.org/nlab/show/exhaustive+category, May 2012.
  • [Sat17] Christian Sattler. The equivalence extension property and model structures. arXiv:1704.06911, 2017.
  • [Sco19] Luis Scoccola. Nilpotent types and fracture squares in homotopy type theory. arXiv:1903.03245, 2019.
  • [Shu06] Michael Shulman. Homotopy limits and colimits and enriched homotopy theory. arXiv:math.CT/0610194, 2006.
  • [Shu15a] Michael Shulman. The univalence axiom for elegant Reedy presheaves. Homology, Homotopy, and Applications, 17(2):81–106, 2015. arXiv:1307.6248.
  • [Shu15b] Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathematical Structures in Computer Science, 25:1203–1277, 6 2015. arXiv:1203.3253.
  • [Shu17] Michael Shulman. Univalence for inverse EI diagrams. Homology, Homotopy and Applications, 19(2):219–249, 2017. arXiv: 1507.03634.
  • [Shu18] Michael Shulman. Towards elementary -toposes. Talk at the Vladimir Voevodsky Memorial Conference, http://home.sandiego.edu/~shulman/papers/eleminf.pdf, 2018.
  • [SS86] Stephen Schanuel and Ross Street. The free adjunction. Cahiers Topologie Géom. Différentielle Catég., 27(1):81–83, 1986.
  • [Ste19a] Raffael Stenzel. On univalence, Rezk completeness and presentable quasi-categories. PhD thesis, University of Leeds, 2019.
  • [Ste19b] Jonathan Sterling. Algebraic type theory and universe hierarchies. arXiv:1902.08848, 2019.
  • [Str14] T. Streicher. A model of type theory in simplicial sets: A brief introduction to Voevodsky’s homotopy type theory. Journal of Applied Logic, 12(1):45 – 49, 2014. http://www.mathematik.tu-darmstadt.de/~streicher/sstt.pdf.
  • [Tay99] Paul Taylor. Practical foundations of mathematics, volume 59 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
  • [TV05] Bertrand Toën and Gabriele Vezzosi. Homotopical algebraic geometry. I. Topos theory. Adv. Math., 193(2):257–372, 2005.
  • [Uni13] Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. http://homotopytypetheory.org/book/, first edition, 2013.
  • [vD18] Floris van Doorn. On the Formalization of Higher Inductive Types and Synthetic Homotopy Theory. PhD thesis, Carnegie Mellon University, 2018. arXiv:1808.10690.
  • [vG12] Benno van den Berg and Richard Garner. Topological and simplicial models of identity types. ACM Trans. Comput. Logic, 13(1):3:1–3:44, 2012.
  • [VK14] Ya. Varshavskiĭ and D. Kazhdan. The Yoneda lemma for complete Segal spaces. Funktsional. Anal. i Prilozhen., 48(2):3–38, 2014.
  • [Voe15] Vladimir Voevodsky. An experimental library of formalized mathematics based on the univalent foundations. Mathematical Structures in Computer Science, 25:1278–1294, 6 2015.
  • [War08] Michael A. Warren. Homotopy Theoretic Aspects of Constructive Type Theory. PhD thesis, Carnegie Mellon University, 2008.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
352771
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description