Accurate Ab-initio Predictions of III-V Direct-Indirect Band Gap Crossovers

Accurate Ab-initio Predictions of III-V Direct-Indirect Band Gap Crossovers

Jeremy W. Nicklas Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA    John W. Wilkins Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
July 13, 2019
Abstract

We report the compositional dependence of the electronic band structure for a range of III-V alloys. Density functional theory with the PBE functional is insufficient to mimic the electronic gap energies at different symmetry points of the Brillouin zone. The HSE hybrid functional with screened exchange accurately reproduces the experimental band gaps and, more importantly, the alloy concentration of the direct-indirect gap crossovers for the III-V alloys studied here: AlGaAs, InAlAs, AlInP, InGaP, and GaAsP.

pacs:
71.20.Nr, 71.23.-k, 71.55.Eq

Knowing the alloy concentrations where the semiconductor is direct or indirect is essential for optoelectronic device design. Consequently a correct quantitative assessment of the electronic structure across different symmetry points of the Brillouin zone for the alloy is vital. Most studies focused on density functional theory (DFT) calculations using the local density approximation (LDA) or the generalized gradient approximation (GGA) which do poorly on excited states. Only recently have hybrid functionals been used in predicting accurate excited states in individual semiconducting alloys. Lee2006 (); Moses2010 ()

The Heyd-Scuseria-Ernzerhof (HSE) hybrid functional Heyd2003 (); Heyd2006 (); Krukau2006 (); Heyd2004 (); Heyd2005 (), which combines the screened exchange with the Perdew-Burke-Ernzerhof (PBE) GGA functional, Perdew1996 () out performs previous DFT methods in reproducing bulk band gaps. Heyd2004 (); Paier2006-1 (); Paier2006-2 () We report HSE reproduces not only the band gaps across the entire composition range of each alloy studied here but also the direct-indirect band gap crossovers seen experimentally.

Figure 1(a) demonstrates this significant improvement of HSE over PBE in predicting the direct-indirect (-X) crossover (denoted by vertical arrows) for the AlGaAs alloy compared with experiment. Vurgaftman2001 () HSE reproduces the direct-indirect crossover within 5% Al concentration from the most recent experimental value published by Yi et al. Yi2009 () The PBE functional which doesn’t take into account screened exchange overestimates this crossover by 23% Al concentration.

Figure 1: (Color online) (a) Band gap energy for AlGaAs calculated using HSE (solid line) and PBE (dashed line) in comparison with Vurgaftman et al. Vurgaftman2001 () recommended experimental fit (dotted line). A direct-indirect band gap crossover (vertical arrows) occurs as the Al concentration is increased. (b) A detailed plot of the individual direct (blue), , and indirect (red), X, gap energy fits using the HSE (solid symbols) and PBE (open symbols) values. The vertical lines denote the direct-indirect band gap crossover.

The disordered zinc-blende (cubic) alloys are best modeled by special quasirandom structures (SQS), Wei1990 () ordered structures designed to reproduce the most important pair-correlation functions of a random alloy. The best possible 32-atom SQS’s we produce for concentrations of and match the pair-correlation functions of a random alloy up to 3rd and 7th nearest neighbors, respectively. Nicklas2010 () The SQS with concentration can be used interchangeably with that of .

Concentration Lattice vectors
(1,1,-2) (0,-3,-1) (-4,1,-1)
(4,2,2) (-4,2,2) (0,-1,1)
Table 1: The lattice vectors of the triclinic and the base-centered orthorhombic SQS’s in units of where is the lattice constant of the alloy ABC.

Table 1 gives the lattice vectors for each SQS used to describe the optical transitions as seen in the zinc-blende primitive cell through folding relations in the Brillouin zone. The SQS with concentration has a base-centered orthorhombic space group symmetry with the following folding relations in reciprocal coordinates,

where the bar denotes superlattice states and the coefficent denotes degeneracies. The SQS with concentration has a triclinic space group symmetry with folding relations given by,

The calculations are performed using the projector augmented-wave (PAW) method. Blochl1994 () The functionals included are the PBE and the HSE06 Heyd2006 () hybrid functional in the vasp code. Kresse1996 () The Ga 3d and In 4d electrons are treated as valence and the wavefunctions are expanded in plane waves up to an energy cutoff of 500 eV. The Brillouin-zone integrations have been carried out on (101010), (644), and (448) -centered meshes for the face-centered cubic primitive cell and SQS supercells for and , respectively.

The lattice constants are linearly interpolated between the experimental parent compound lattice constants taken from Vurgaftman et al.Vurgaftman2001 () Relaxations are not taken into account after observing only a slight shift of 1% Al concentration in the direct-indirect crossover in the AlInP alloy using the PBE functional. The compositional dependence of the band gap is described by a quadratic fit to the data, whereas a cubic fit is taken for only the direct gap of AlGaAs. Nicklas2010 ()

HSE PBE Exp.
AlGaAs
0.47 0.65 0.38111From Ref. Vurgaftman2001 (), references therein., 0.42222From Ref. Yi2009 ().
AlInAs
0.68 0.76 0.64111From Ref. Vurgaftman2001 (), references therein.
AlInP
0.37 0.44 0.44555From Ref. Onton1970 ()., 0.34666From Ref. Ishitani1996 () for strained AlInP.
GaInP
0.72 0.86 0.67111From Ref. Vurgaftman2001 (), references therein.,0.746333From Ref. Novak2005 ().
0.73 0.90
0.75 0.96 0.77444From Ref. Merle1977 ().
GaAsP
0.56 0.77
0.57 0.84 0.45111From Ref. Vurgaftman2001 (), references therein.
0.58 0.94
Table 2: Direct-indirect crossover points for five important semiconducting alloys obtained using HSE and PBE compared alongside experimental measurements. HSE reproduces accurate crossover points for all the alloys other than AlInP.
Figure 2: (Color online) Band gap energy for (a) AlInAs, (b) AlInP, (c) GaInP, and (d) GaAsP from direct to indirect with increasing concentration. Both HSE (solid line) and PBE (dashed line) are plotted alongside Ref. Vurgaftman2001 () recommended experimental fits (dotted line). The arrows denote crossovers: -X (black), -L (red), and L-X (green). The experimental crossovers here are for visual purposes only and the actual experimental crossovers are listed in Table 2.

Figure 1(b) supplements (a) by detailing the individual direct and indirect gap energies for AlGaAs with the calculated values denoted by symbols. It shows accurate HSE gap energies for both the and X symmetry points throughout the entire composition range.

Figure 2 displays the band gap energies and the direct-indirect crossovers for four different III-V alloys. A detailed comparison of the crossovers is given in Table 2.

For AlInAs, Figure 2(a) displays the band gap energy for both HSE, PBE, and the recommended experimental bowing parameters. Vurgaftman2001 () HSE not only predicts a real band gap for the concentration range of 0-10% of Al for this alloy, but also reproduces the -X crossover by 4% Al concentration compared with PBE’s overestimation by 12% Al concentration as seen in Table 2.

For GaInP, Figure 2(c), experiments utilizing optical luminescence measurements see only a single -X crossover Hakki1970 (); Williams1970 (); Lettington1971 (); Chevallier1971 (); Alibert1972 (); Macksey1973 (); Lee1974 () whereas high pressure electrical measurements Pitt1974 () and piezoreflectance measurements Merle1977 () observed two-point crossovers for -L and L-X two point crossovers. Both HSE and PBE yield two point crossovers as seen in Fig. 2(c) with only HSE reproducing crossover points that lie nearly on top of experiment as well as reproducing the band gap to within 8% accuracy throughout the whole Ga concentration.

For GaAsP, Figure 2(d), both HSE and PBE predict a two-point crossover in Fig. 2(d); whereas experiments which rely on optical luminescence observe only a single point -X crossover at . HSE not only produces a direct-indirect crossover that agrees better with experiment, but also predicts a two-point crossover that is only separated by 2% P concentration that might be seen as a single point crossover in experiment.

For AlInP, Figure 2(b), HSE predicts a crossover at 37% Al concentration underestimating the experimental value by Onton et al. (Onton1970 () but shows relatively good agreement with the recent results of strained AlInP by Ishitani et al. (). Ishitani1996 () More studies of the AlInP alloy could provide a detailed comparison with theory.

To conclude, HSE reproduces direct-indirect crossovers within 12% atomic composition for the alloys studied here, whereas PBE overestimates crossover points by 39% atomic composition. The HSE functional also substantially improves on band gap energies across the entire composition range. We expect HSE to perform similarly for other semiconducting alloys.

This work was supported by DOE-Basic Energy Sciences, Division of Materials Sciences (DE-FG02-99ER45795). This research used computational resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the Ohio Supercomputing Center.

References

  • (1) B. Lee and L.-W. Wang, Phys. Rev. B 73, 153309 (2006), sX-LDA on cubic AlGaN, bandgap crossover not yet experimentally measured.
  • (2) P. G. Moses and C. G. Van de Walle, Appl. Phys. Lett. 96, 021908 (2010), HSE on InGaN, no bandgap crossover exists for this alloy.
  • (3) J. Heyd, G. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
  • (4) J. Heyd, G. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
  • (5) A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
  • (6) J. Heyd and G. Scuseria, J. Chem. Phys. 121, 1187 (2004).
  • (7) J. Heyd, J. Peralta, G. Scuseria, and R. Martin, J. Chem. Phys. 123, 174101 (2005).
  • (8) J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  • (9) J. Paier, M. Marsman, K. Hummer, G. Kresse, I. Gerber, and J. Angyan, J. Chem. Phys. 124, 154709 (2006).
  • (10) J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Angyan, J. Chem. Phys. 125, 249901 (2006).
  • (11) I. Vurgaftman, J. Meyer, and L. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
  • (12) W. Yi, V. Narayanamurti, H. Lu, M. A. Scarpulla, A. C. Gossard, Y. Huang, J.-H. Ryou, and R. D. Dupuis, Appl. Phys. Lett. 95, 112102 (2009).
  • (13) S. Wei, L. Ferreira, J. Bernard, and A. Zunger, Phys. Rev. B 42, 9622 (1990).
  • (14)  see supplementary material at URL for SQS supercell and band bowing parameters.
  • (15) P. Blochl, Phys. Rev. B 50, 17953 (1994).
  • (16) G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
  • (17) J. Novák, S. Hasenöhrl, R. Kúdela, and M. Kucera, J. Crystal Growth 275, e1281 (2005).
  • (18) P. Merle, D. Auvergne, H. Mathieu, and J. Chevallier, Phys. Rev. B 15, 2032 (1977).
  • (19) A. Onton and R. J. Chicotka, J. Appl. Phys. 41, 4205 (1970).
  • (20) Y. Ishitani, E. Nomoto, T. Tanaka, and S. Minagawa, J. Appl. Phys. 81, 1763 (1996).
  • (21) B. W. Hakki, A. Jayaraman, and C. K. Kim, J. Appl. Phys. 41, 5291 (1970).
  • (22) E. W. Williams, A. M. White, A. Ashford, C. Hilsum, P. Porteous, and D. R. Wight, J. Phys. C 3, L55 (1970).
  • (23) A. M. Lettington, D. Jones, and R. Sarginson, J. Phys. C 4, 1534 (1971).
  • (24) J. Chevallier and A. Laugier, Phys. Status Solidi A 8, 437 (1971).
  • (25) C. Alibert, G. Bordure, A. Laugier, and J. Chevallier, Phys. Rev. B 6, 1301 (1972).
  • (26) H. M. Macksey, N. Holonyak, R. D. Dupuis, J. C. Campbell, and G. W. Zack, J. Appl. Phys. 44, 1333 (1973).
  • (27) M. H. Lee, N. Holonyak, W. R. Hitchens, and J. C. Campbell, Solid State Comm. 15, 981 (1974).
  • (28) G. D. Pitt, M. K. R. Vyas, and A. W. Mabbitt, Solid State Comm. 14, 621 (1974).
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
187337
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description