A Taxonomic Study of Asteroid Families from KMTNet-SAAO Multi-band Photometry

A Taxonomic Study of Asteroid Families from KMTNet-SAAO Multi-band Photometry

N. Erasmus South African Astronomical Observatory, Cape Town, 7925, South Africa. A. McNeill Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86001, USA. M. Mommert Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff, AZ, 86001, USA D. E. Trilling Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86001, USA. South African Astronomical Observatory, Cape Town, 7925, South Africa. A. A. Sickafoose South African Astronomical Observatory, Cape Town, 7925, South Africa. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA. K. Paterson Department of Astronomy, University of Cape Town, Cape Town, 7701, South Africa
Abstract

We present here multi-band photometry for over 2000 Main-belt asteroids. For each target we report the probabilistic taxonomy using the measured V-R and V-I colors in combination with a machine-learning generated decision surface in color-color space. Through this method we classify 85 of our targets as one the four main Bus-DeMeo complexes: S-, C-, X-, or D-type. Roughly one third of our targets have a known associated dynamic family with 69 families represented in our data. Within uncertainty our results show no discernible difference in taxonomic distribution between family members and non-family members. Nine of the 69 families represented in our observed sample had 20 or more members present and therefore we investigate the taxonomy of these families in more detail and find excellent agreement with literature. Out of these 9 well-sampled families, our data show that the Themis, Koronis, Hygiea, Massalia, and Eunomia families display a high degree of taxonomic homogeneity and that the Vesta, Flora, Nysa-Polana, and Eos families show a significant level of mixture in taxonomies. Using the taxonomic purity and the degree of dispersion in observed colors for each of the 9 well-sampled collisional families we also speculate which of these families potentially originated from a differentiated parent body and/or is a family with a possible undetermined nested family. Additionally, we obtained sufficient photometric data for 433 of our targets to extract reliable rotation periods and observe no obvious correlation between rotation properties and family membership.

minor planets, asteroids: individual (Main-Belt Asteroids) — techniques: photometric — surveys
\correspondingauthor

Nicolas Erasmus

1 Introduction

Main-belt asteroids (MBAs) are the most abundant designated objects in the solar system, representing approximately of all of the 800 000 bodies listed in the Minor Planet Center (MPC) catalog111http://minorplanetcenter.net/. This large population of known MBAs therefore lends itself to in-depth statistical investigations to find correlations between orbital and physical properties. One such investigation has led to the identification of asteroid families where the proper orbital elements of family members display clustering in proper orbital space, suggesting a common collisionally-disrupted parent-body source for family members. Additionally, composition investigations targeting family members have revealed that in general there is a homogeneity within families (Bus, 1999), further supporting the idea behind a common parent or source. Correlation in spectra, color, or albedo within families has also contributed to the fine-tuning of family membership when ambiguity in membership arises from pure orbital considerations (Parker et al., 2008). However, as more and more observing data have become available, certain nuances have come to the foreground which have failed to resolve past questions around asteroid families and in some instances raised new questions.

For instance, the majority of well-defined families do show consistent spectroscopic properties within a family but there are families that show bi-modal taxonomic distributions. Furthermore, families with homogeneous spectra do also display variations larger than observational uncertainties (Bus, 1999). Some explanations that have been proposed include: nested families, i.e., two overlapping families in orbital space that are actually two separate families (Cellino et al., 2001); two colliding parents that had completely different mineralogy; space weathering that modifies spectral shape (Brunetto & Strazzulla, 2005); a large differentiated parent body having variations in mineralogy (Binzel & Xu, 1993); or simply incorrectly assigning membership (sometimes referred to as interlopers).

Another contentious topic is the origin of family versus non-family members: did non-family members originate from a quiescent disk with a few large bodies the source of families , or did only a few very large bodies generate both family and non-family members (Dermott et al., 2018).

In this work we present the visible colors for a consistent sample of over 2000 MBAs. The colors are derived from multi-band photometry light curves ranging from hr (mean: 3.0 hr) which has also allowed us to obtain rotational properties of roughly 1/5th of our targets. By conducting an untargeted survey we have obtained photometry for a sample of MBAs that will be unbiased against location within the main-belt, family or non-family membership, rotation period and amplitude. By analyzing our data set we attempt to decode some of the remaining open questions surrounding asteroid families. We use the entire data set to investigate any differences in the taxonomic distribution of objects belonging to collisional families versus those that do not. We then do a more in-depth analysis of 9 families: Vesta, Flora, Nysa-Polana, Themis, Koronis, Eos, Hygiea, Massalia and Eunomia. We are able to perform a more in-depth study on these families because they had 20 or more confirmed members which were present in our data set.

2 Observations and Data Reduction

Observations were performed during two campaigns. The first campaign took place between October 2016 and February 2017 over four observing weeks and was originally intended for a near-Earth asteroid study (Erasmus et al., 2017). However, the large field of view meant that the fields observed in that study also included 1000 serendipitously observed MBAs (Erasmus et al., 2018). The second campaign included one observing week in October 2017 and another observing week in February 2018. For the second campaign no specific asteroids were targeted but the observing strategy was to observe close to the ecliptic to maximize the number of MBAs captured in a single field. Approximately 1300 MBAs were observed during the second campaign. Figure 1 indicates the pointing coordinates for the two combined campaigns.

Figure 1: Sky-coordinates of all observed KMTNet fields for the two combined campaigns (hollow squares). The size of the square is proportional to the number of serendipitous MBAs with acceptable SNR extracted in each field. As expected, fields observed on or close to the ecliptic yielded the highest number of MBAs, though some fields on the ecliptic only yielded a few MBAs because unfavorable observing conditions for that specific field meant a large number of MBAs had to be discarded.

The telescope used for the two campaigns was the Sutherland, South Africa node of the Korea Microlensing Telescope Network (KMTNet) (Kim et al., 2016). The telescope has a primary mirror 1.6 m in diameter and is fitted with four 9k 9k CCDs, mosaicking the 2  2 field of view. Each CCD covers 1  1 of sky with a plate-scale of 0.40 arcsec/pixel. Observations were performed alternating among V (nm, nm), R (nm, nm), and I (nm, nm) filters in the sequenceVRVI, repeating the sequence continuously for the entire observing duration. The exposure time for each filter was 60 s for campaign one and 120 s for campaign two. Image reductions were performed using the MeerLICHT reduction pipeline (Paterson et al. in prep) using the KMTNet setting file.

Photometry was extracted from the KMTNet observing data using PHOTOMETRYPIPELINE (PP), an open source Python software package for automated photometric analysis of imaging data, developed by Mommert (2017). PP also has a feature that enables it to find serendipitously observed asteroids in the image fields using IMCCE’s SkyBoT service (Berthier et al., 2006). This feature queries the SkyBoT service for each observed field with a limiting magnitude that is equal to the 90-th percentile of the calibrated magnitudes of all sources in the field and a positional uncertainty of less than 5 pixels. These criteria ensure a reliable identification of serendipitously observed asteroids in the field. (See also Erasmus et al. (2017, 2018) for further details on data reduction and photometry extraction.)

Figure 2: Example photometric data for one of the observed MBAs, 44440 (1998 UM15). The V- (green circles), R- (red squares), and I- (burgundy diamonds) filter data are shown. The hollow symbols in the bottom light curve is the result of adding the determined colors (see Section 3) to the R and I data points. Plots and the associated combined (V- together with adjusted R- and I-band) photometric data for all 2276 targets are electronically available for download. (For referee, attached as a zipped file.)

3 Color Calculation and Taxonomy Determination

To determine the colors of each observed MBA but still accounting for variations in magnitude due to asteroid rotation during an observation, a linear interpolation was performed between adjacent V-filter data points and used to obtain a corrected V magnitude at times of inter-spaced non-V observations. Respective colors were derived by subtracting the non-V magnitudes from the interpolated V magnitudes. The final determined color is the weighted average (by error in magnitude) of all such possible subtractions in a given observation window. As an example, in the top-right corner of Figure 2 we show the weighted average colors calculated from the V, R, and I photometry data for one of the observed targets. The hollow symbols in the bottom light curve are the result of adding the determined colors to the R and I data points.

Figure 3: The measured colors of all 2276 observed MBAs with the decision surface generated by the ML algorithm superimposed. MBAs in orange, pink, blue, and yellow were classified by the ML algorithm as S-, C-, X-, and D-type asteroids, respectively (see Section 3 for detail). MBAs in black remain unclassified since the highest taxonomic probability was less than 50%. Sizes of the data points are inversely proportional to the uncertainty in calculated color (scale is shown). Taxonomic probabilities for each target are reported in a table in the Supplementary Material. (For referee, appended to manuscript as Appendix).

The most likely taxonomy of each target is determined by plotting the solar-corrected V-I versus V-R color of each target superimposed on a decision surface in color-color space (see Figure 3). The decision surface is generated by a machine-learning (ML) algorithm trained with V-I and V-R colors calculated from MIT-UH-IRTF222http://smass.mit.edu/minus.html asteroid spectra that have well defined S, C, X, or D taxonomic spectral shapes according the the Bus-DeMeo taxonomic scheme (DeMeo et al., 2009). The value of each observed target’s color with respect to the decision boundaries, as well as the error in measured color, is used to calculate the probability of the target having an S, C, X, or D taxonomy. The taxonomy with the highest probability is assigned to the target and reflected in the color of the data point in Figure 3 (S = orange, C = pink, X= blue, and D = yellow). Data points in black are targets with unassigned taxonomy because none of the possible taxonomies had a probability higher than 50 which we chose as a limiting criteria. This usually occurs for targets that fall within less than 1 in measured color to a decision boundary. For more detail on the ML training process and method for calculating taxonomic probability see Mommert et al. (2016); Erasmus et al. (2017, 2018). Taxonomic probabilities for each target are reported in a table in the Supplementary Material. (For referee, appended to manuscript as Appendix).

4 Extraction of Rotational Properties

Rotation periods were extracted from the light-curves by performing a Fourier analysis in the form of a least-squares spectral analysis on the combined V, R, and I photometry data to generate a periodogram for each target.

Figure 4: Example Lomb-Scargle periodogram of photometry data shown in Figure 2. Top: Combined V, (adjusted)-R and (adjusted)-I data. Middle: Periodogram with confidence, period, and uncertainty in period shown. Bottom: Top data folded with phase=2 and plotted for phase=4. Plots for all 433 targets which had distinct periodogram peaks and hence resolvable periods are electronically available for download. (For referee, attached as a zipped file.)

An example generated Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982) as a result of the analysis on the photometry data in Figure 2 is shown in Figure 4. Any light-curve that produced a periodogram with a distinct peak with a confidence higher than 40% was flagged. All flagged periodograms were visually inspected and retained if deemed plausible. The uncertainty in periodicity is determined by fitting a Gaussian function to the periodogram peak and using the RMS width as the uncertainty (see superimposed black curve on periodogram peak and value in Figure 4). Out of the 2276 targets we were able to extract periods for 433 targets. The rotation periods and light-curve amplitude for these 433 targets are recorded in the table in the Supplementary Material (For referee, appended to manuscript as Appendix). For the remaining targets we report the lower limits on the periods (i.e. observational windows) and lower limit on the light-curve amplitudes. See Erasmus et al. (2017, 2018) for more details on extraction of rotation properties.

5 Family Determination

To identify an asteroid family algorithms are used to search for regions in proper orbital element space with clustering of asteroids. This is carried out using proper orbital elements rather than using the osculating orbital elements which may significantly evolve over time (Knezevic et al., 2002). The most common method used for identification of these families is the Hierarchical Clustering Method (Zappala et al., 1990). For statistical studies it is common to simply refer to the proper orbital element boundaries for collisional families in order to insure a sufficient number of targets in each data bin. This is generally a good approximation, especially when using large data sets with sparse detections. For this work, however, we utilize and cross-correlate with data from Nesvorny (2015) obtained through The Planetary Data System333https://pds.nasa.gov/ (PDS) to associate objects from our survey data with known collisional families. We impose a cut-off of 20 objects to consider a family worthy of studying in this work and find that we have a sufficient sample for 9 collisional families. These are the Vesta, Flora, Nysa-Polana, Themis, Koronis, Eos, Hygiea, Massalia and Eunomia families. To identify potential interlopers within our data set we make use of the c-parameter calculated by Nesvorny (2015) for each of our observed targets. In general we find that we have extremly low levels of interloper contamination in our data set with only one potential interloper in each of the Eos, Themis, and Flora families and three potential interlopers within the Nysa-Polana family.

6 Results and Discussion

The results of our color calculations, taxonomic determinations, and rotation property extractions for all our observed targets are summarized in a table in the Supplementary Material. (For referee, appended to manuscript as Appendix). Cross-correlating our dataset with the PDS database shows that 740 of our targets are associated with a known collisional family (also indicated in the table), with 69 families being represented. Of these, 9 have sufficient (20) targets to study the family as a sub-sample. In Section 6.1 we compare the taxonomic distribution of family members to non-family members as a whole. In Section 6.2.1-6.2.9 we compare the taxonomies for each of the 9 well-sampled collisional families we determined with the reported make-up of the family from literature. In Section 6.3 we define and calculate two metrics (the taxonomic purity and the degree of dispersion in observed colors) for each of the 9 well-sampled collisional families. Using these two metrics we speculate which of the 9 families potentially originated from a differentiated parent body and/or which family still has a possible undetermined nested family present.

6.1 Comparison of Collisional Family Objects and Non-Members

Figure 5: (Left) Plotted in proper orbital space are the 740 targets in our sample that had known collisional families after cross-correlating with data from Nesvorny (2015). The color of each data point indicates the taxonomy we determine (see Section 3) with orange, blue, pink and yellow for S-, X- and C- and D-type asteroids, respectively. In general, the plot shows clustering of similar taxonomic types in proper orbital space which is in agreement with the notion that there should be homogeneity in composition within families. (Right) Plotted in proper orbital space are the remaining targets in our sample that had no known collisional families after cross-correlating with data from Nesvorny (2015). (Left and Right) Adjacent to the main plots, the taxonomic distributions of the family and non-family populations are shown. Within uncertainties the two populations have identical distributions.

We compare the derived taxonomies for objects linked to known collisional families and those remaining objects which are not. If the taxonomic proportions of these two populations were different this could imply that certain asteroid compositions are more frequently disrupted by catastrophic collisions leading to the formation of asteroid families. In this case we find that the overall proportions of taxonomies in the two populations are identical to within uncertainties. This is presented in Figure 5.

6.2 Individual Family Analysis

6.2.1 Vesta

The Vesta family is one of the most widely-studied main belt sub-populations. Earth-based spectrometric observations have shown a distinct spectral signature that is similar to the spectral shape of S-type asteroids but with enhanced absorption features in both the 1m and 2m regions.

In Figure 6 we plot the colors of the 76 Vesta family targets observed in this study superimposed on the decision surface generated by the ML algorithm (see section 3). Unfortunately the possibility of a V-type classification was not included in the ML classification method as there are insufficient visible spectra of V-type asteroids in the MIT-UH-IRTF database which is the source of the training data. The consequence of this is that the ML method mostly classifies V-type asteroids as S-type asteroids because of the similar spectral shape between the two spectra. However, an oval is included in Figure 6 indicating where one would expect the visible colors of a V-type asteroid. This was achieved by convolving the V-, R-, and I-filter responses with the mean Bus-DeMeo V-type spectrum (DeMeo et al., 2009), with the associated upper- and lower-limits, to calculate the mean, minimum, and maximum V-R and V-I colors expected from this spectrum. As expected the oval region occurs within the S-type zone but at a lower V-I color than the mean S-type color (see Figure 3) due to the stronger 1m absorption feature of V-type spectra. Most of the observed Vesta family targets cluster in the vicinity of the expected V-type region but in comparison to the other 8 families (Figure 7-14) we observe a larger spread in colors. In addition we observe a significant number of our targets (with small uncertainties in measured color) falling within the C-type zone in color-color space. Our result therefore supports the idea behind a differentiated parented body with multiple taxonomies possible in the daughter bodies (Russell et al., 2012).

Figure 6: (Top) The measured colors of all 76 observed Vesta targets with the taxonomic decision surface generated by the ML algorithm superimposed (see Section 3 for detail). The oval with the cross in the centre indicates the color and limits calculated from the mean Bus-DeMeo V-type spectrum. The dashed oval reflects the extent of the limits when incorporating our median observed photometric uncertainty. (Bottom) Proper orbital elements of all 76 observed Vesta targets with histograms indicating the taxonomic dependence on orbital parameters. Family members from Nesvorny (2015) are plotted in small data points in the background.

6.2.2 Flora

The Flora family, located in the inner main belt, has been well-established as an S-type family (Florczak et al., 1998). Situated in orbital space close to the resonance it has been identified as a possible source for the near-Earth asteroid (NEA) population (Bottke et al., 2000). Similarities in spectral properties between the NEA population and the Flora family have also been been confirmed (Vernazza et al., 2008).

The colors plotted in Figure 7 of the 62 observed Flora family members show a majority in S-type classification and are therefore in agreement with Flora family literature. However, there are a few targets with C-type colors observed. We find the compositional break-down of the Flora family to be within uncertainties identical to the compositional break-down of a separate study of 39 NEAs using the same ML classification technique used in this study (Erasmus et al., 2017). Our taxonomic distribution results here therefore support previously published works suggesting the Flora family as a strong feeder for the NEA population. The large number of C-type asteroids in our sample could suggest the presence of a still undetermined nested family or evidence that Flora originated from a differentiated parent body (see Section 6.3).

Figure 7: (Top) The measured colors of all 62 observed Flora targets with the taxonomic decision surface generated by the ML algorithm superimposed (see Section 3 for detail). The circled data point is a suspected interloper because the c-parameter (see Nesvorny et al. (2015) for definition and detail) for this target has an absolute value larger than 1. (Bottom) Proper orbital elements of all 62 observed Flora targets with histograms indicating the taxonomic dependence on orbital parameters. Family members from Nesvorny (2015) are plotted in small data points in the background.

6.2.3 Massalia

Located in the inner main belt, the relatively young ( Myr; Spoto et al. (2015)) Massalia family is distinguishable in orbital space from other families by its low ( ) orbital inclination. It is thought that the Massalia family can be a source region for NEAs with objects being ejected from the main belt through the 3:1 mean motion resonance (Milani et al., 2014).

The derived taxonomies for the Massalia family are in agreement with the expected S-type nature (Masiero et al., 2015) of the family to within uncertainties.

Figure 8: (Top) The measured colors of all 32 observed Massalia targets with the taxonomic decision surface generated by the ML algorithm superimposed (see Section 3 for detail). (Bottom) Proper orbital elements of all 32 observed Massalia targets with histograms indicating the taxonomic dependence on orbital parameters. Family members from Nesvorny (2015) are plotted in small data points in the background.

6.2.4 Nysa-Polana

The Nysa-Polana family is no longer regarded as a single entity but rather as two subgroups with similar proper orbital properties but with unambiguously distinct albedo and spectral signatures (Cellino et al., 2001). The eponym of the family, (44) Nysa, has subsequently also been excluded as a member of either subgroup based on a combination of its differing albedo and reflective spectrum to the albedo and spectra of the two identified subgroups (Masiero et al., 2015). That said, the “Nysa” subgroup is associated with the S-type taxonomic class while the “Polana” subgroup has shown B-type spectral signatures.

Just as our ML classification method could not distinguish between the V-type taxonomic class and the S-type taxonomic class (see Section 6.2.1), the method is also unable to distinguish between B-type and C-type asteroids. As was done for expected V-type colors, Figure 9 shows the expected region for B-type asteroids in color-color space (see black oval in plot). Figure 9 also includes the plotted colors for the 118 observed Nysa-Polana family members. The plotted colors clearly reveal the two subgroups, one group centred around the mean S-type visible colors and another tightly clustered group in close proximity to the expected B-type visible colors.

Figure 9: (Top) The measured colors of all 118 observed Nysa-Polana targets with the taxonomic decision surface generated by the ML algorithm superimposed (see Section 3 for detail). The three circled data points are suspected interlopers because the c-parameters (see Nesvorny et al. (2015) for definition and detail) for these targets have an absolute value larger than 1. The oval with the cross in the centre indicates the color and limits calculated from the mean Bus-DeMeo B-type spectrum. The dashed oval reflects the extent of the limits when incorporating our median observed photometric uncertainty. (Bottom) Proper orbital elements of all 118 observed Nysa-Polana targets with histograms indicating the taxonomic dependence on orbital parameters. Family members from Nesvorny (2015) are plotted in small data points in the background.

6.2.5 Eunomia

Eunomia is a primarily S-type family found in the intermediate main belt thought to have formed Gyr ago (Spoto et al., 2015). Lazzaro et al. (1999) identified the presence of objects in the same proper orbital element space as the Eunomia family showing featureless spectra indicative of C-type asteroids. These objects were suggested to either be interlopers or evidence for a differentiated parent body. Milani et al. (2014) suggest that the Eunomia family consists of further sub-families caused by cratering events within the lifetime of the family as a whole. From our limited sample we do not identify any clear indication of a large number of outliers from the expected S-type population. The derived taxonomies suggest that to within uncertainties all our observed objects can be considered S-type asteroids.

Figure 10: (Top) The measured colors of all 20 observed Eunomia targets with the taxonomic decision surface generated by the ML algorithm superimposed (see Section 3 for detail). (Bottom) Proper orbital elements of all 20 observed Eunomia targets with histograms indicating the taxonomic dependence on orbital parameters. Family members from Nesvorny (2015) are plotted in small data points in the background.

6.2.6 Hygiea

The Hygiea family is a primarily C-type family found in the outer main asteroid belt, although B-type asteroids are also thought to be present (Carruba, 2013). The parent body of this family (10) Hygiea is the fourth largest asteroid (by mass) in the main belt. As expected our taxonomic determination sits within the boundary for C-types. Some objects in the sample have been identified as X-types, however, the uncertainties on this determination are such that we are unable to conclude with any confidence that these bodies are true outliers. Due to the dearth of training data available for B-type asteroids we are unable to directly determine whether objects are truly B-types or C-types; we have plotted the boundaries in this color-color plot in which B-type asteroids would fall. We find that all of the objects in our sample fall within the expected C-type boundary to within uncertainties, with several falling into the region described by the B-type estimate although we cannot conclusively classify these objects with that degree of detail with the current data available for our methodology.

Figure 11: (Top) The measured colors of all 36 observed Hygiea targets with the taxonomic decision surface generated by the ML algorithm superimposed (see Section 3 for detail). The oval with the cross in the centre indicates the color and limits calculated from the mean Bus-DeMeo B-type spectrum. The dashed oval reflects the extent of the limits when incorporating our median observed photometric uncertainty. (Bottom) Proper orbital elements of all 36 observed Hygiea targets with histograms indicating the taxonomic dependence on orbital parameters. Family members from Nesvorny (2015) are plotted in small data points in the background.

6.2.7 Themis

The Themis family, like most families located on the outer edge of the main-belt, has been observed to be comprised of mostly C-type members (Ziffer et al., 2011). The discovery of cometary activity on at least two family members (Hsieh & Jewitt, 2006) as well as direct evidence of water-ice on (24) Themis itself by Rivkin & Emery (2010) suggests that this family could be a significant reservoir of water-ice in the solar system.

The visible colors of the 54 Themis family targets observed in this study imply that the targets are almost exclusively C-type in taxonomy (see Figure 12), which is in agreement with previous studies and observations. We find that, as expected, most objects are defined as being C-type asteroids with a high degree of confidence. Several objects are classified as X-types but the uncertainties on these measurements are such that they cross the boundary between X- and C-type. We identify two objects with taxonomic determinations significantly differing from that of the main family which we suspect to be interlopers in the Themis family. They are 9646 (1995 BV) and 187245 (2005 SV190) which were determined to be D-type and S-type respectively.

Figure 12: (Top) The measured colors of all 54 observed Themis targets with the taxonomic decision surface generated by the ML algorithm superimposed (see Section 3 for detail). The circled data point is a suspected interloper because the c-parameter (see Nesvorny et al. (2015) for definition and detail) for this target has an absolute value larger than 1. (Bottom) Proper orbital elements of all 54 observed Themis targets with histograms indicating the taxonomic dependence on orbital parameters. Family members from Nesvorny (2015) are plotted in small data points in the background.

6.2.8 Koronis

The Koronis family is situated in the outer main belt and, unusually for its semi-major axis location, consists primarily of S-type asteroids. We find that most objects belonging to this family in our sample are determined to be S-type objects (see Figure 13).

Figure 13: (Top) The measured colors of all 50 observed Koronis targets with the taxonomic decision surface generated by the ML algorithm superimposed (see Section 3 for detail). (Bottom) Proper orbital elements of all 50 observed Koronis targets with histograms indicating the taxonomic dependence on orbital parameters. Family members from Nesvorny (2015) are plotted in small data points in the background.

6.2.9 Eos

The Eos family is comprised of the relatively rare K-type asteroid taxonomy associated with CV and CO meteorite spectra. The K-type spectral shape is similar to that of S-type spectra but with a slightly smaller red-slope towards infra-red wavelengths and the absence of the 2m absorption feature that is present in S-type spectra. Therefore it is difficult to distinguish K-type spectra from S-type spectra in the visible where there is little difference between the two. As a result, the 43 Eos family targets have determined colors that classify them as mostly S-type asteroids by our ML method as shown in Figure 14. Many of the targets with low uncertainty in their calculated color fall within the expected K-type region (see black oval, and 6.2.1 for method to determining perimeter) which suggests that the observations agree with the K-type taxonomy claimed by current literature. The lack of training data available for K-type asteroids means that this conclusion must be considered speculative.

Figure 14: (Top) The measured colors of all 43 observed Eos targets with the taxonomic decision surface generated by the ML algorithm superimposed (see Section 3 for detail). The circled data point is a suspected interloper because the c-parameter (see Nesvorny et al. (2015) for definition and detail) for this target has an absolute value larger than 1. The oval with the cross in the centre indicates the color and limits calculated from the mean Bus-DeMeo K-type spectrum. The dashed oval reflects the extent of the limits when incorporating our median observed photometric uncertainty. (Bottom) Proper orbital elements of all 43 observed Eos targets with histograms indicating the taxonomic dependence on orbital parameters. Family members from Nesvorny (2015) are plotted in small data points in the background.

6.3 Identifying Differentiated Parent Bodies and Nested Families

In order to identify which of our well-sampled families possibly originate from a differentiated parent body, we define and calculate two metrics using the observed colors of each of our targets. The first is the purity in our observed taxonomy for a given family which is defined as the highest taxonomic fraction based on the summation of the probabilities for each respective class type (see table in Supplementary material for probabilities). The second metric quantifies how dispersed the observed colors are by calculating the median difference in color (weighted by error in measured color) from the median color of all the observed targets of the family. These two metrics potentially single out families with differentiated parents since a non-differentiated parent would likely result in low variations in observed colors and also a high purity in measured taxonomy of daughter bodies.

For this analysis we treat the Nysa-Polana family as two separate families (“Nysa” and “Polana”) since this is now commonly accepted as being two separate families with differing taxonomy (the two different taxonomic groups are observed in this study as well, see Figure 9). However, we also include a datapoint for the combined Nysa-Polana family in order to get an idea of what the two metric values would be for a bi-modal (nested) family like Nysa-Polana. Finally, we also exclude the Eos family because the expected (and measured, see Figure 14) colors of K-type asteroids fall on top of the decision boundary between S- and X-type colors. Since we do not include K-type as a possible classification in our analysis the the purity metric makes little sense in this case. We do not encounter this purity determination problem for the Vesta family (V-type) or the “Polana” family (B-type) as both of these colors are encapsulated in the S- and C-type zones of the color-color plot respectively and do not fall close to a decision boundary (see Figure 6 and 9). We therefore use the S-type fraction as a purity metric for the Vesta family and the C-type fraction as the purity metric for the “Polana” family.

In Figure 15 we plot the results of our analysis and as expected the Vesta family which has been confirmed by the Dawn mission to originate from a differentiated parent body (De Sanctis et al., 2012) has a low purity in observed taxonomy and high variations in observed colors compared to most of the other families we plot. The bi-modal Nysa-Polana family’s metrics also shows low purity in observed taxonomy and high variations in observed colors but when separated into the “Nysa” and “Polana” family show very high purity and low variation in colors. The remaining families, with the exception of Massalia and Flora, have both a higher taxonomic purity and a lower color dispersion than the Vesta and Nysa-Polana family suggesting that none of these originate from differentiated parent body or have a nested family with a differing taxonomy present.

Our Massalia family targets have the highest mean error in determined color of the 9 families we investigate (compare error bar scale in Figure 8 to that of the other families) and probably the reason for the low purity metric we determine. Therefore the Massalia family’s purity metric is the least reliable of all the families and probably not dependable enough to make any concrete conclusions regarding its parent body.

The Flora family has very similar metric values to the Vesta family which could be an indication that this family also originated from a differentiated parent body. A differentiated parent body for the Flora family has been suggested in the past (Gaffey, 1984). Using Nysa-Polana, which shows evidence of a bimodal histogram (one C-type peak and one S-type peak, see Figure 9) in both eccentricity and inclination as a yardstick for a nested family, and comparing that to the histograms of Flora (see Figure 7) which show no evidence of any bimodal behaviour further supports the idea that Flora’s observed mixed taxonomy is due to a differentiated parent body rather than a nested family.

Figure 15: Plotted is the taxonomic purity and the degree of dispersion in observed colors for each of the 9 well-sampled collisional families. See Section 6.3 for definition and discussion of these two metrics.

7 Conclusion

Multi-band photometry for 2276 MBAs has been presented. For each target we determine the probabilistic taxonomy using the measured V-R and V-I colors in combination with a machine-learning generated decision surface in color-color space. We investigate in detail our determined taxonomy of all targets of 9 families which had 20 or more members present in our data set. In general we find excellent agreement with the observed taxonomy of these families to the expected taxonomy from previous studies.

Using the observed colors for each target we define and calculate two metrics of the 9 well-sampled collisional families and use these two metrics to speculate which of these families potentially originated from a differentiated parent body and/or is a family with a possible undetermined nested family. Our results show that the Flora family has very similar metric values to the Vesta family which could be an indication that, like the Vesta family, the Flora family possibly also originated from a differentiated parent body.

Finally, our photometry data was sufficient to extract reliable rotation periods for 433 of our targets and we observe no obvious correlation between rotation properties and family membership.

Acknowledgements

This research has made use of the KMTNet system operated by the Korea Astronomy and Space Science Institute (KASI) and the data were obtained by observations made at the South African Astronomical Observatory (SAAO). This work is partially supported by the South African National Research Foundation (NRF). This work is supported in part by the National Aeronautics and Space Administration (NASA) under grant No. NNX15AE90G issued through the SSO Near-Earth Object Observations Program and in part by a grant from NASA’s Office of the Chief Technologist.

References

  • Berthier et al. (2006) Berthier, J., Vachier, F., & Thuillot, W. 2006, 351, 367
  • Binney & Merrifield (1998) Binney, J., & Merrifield, M. 1998, Galactic Astronomy
  • Binzel & Xu (1993) Binzel, R. P., & Xu, S. 1993, Science, 260, 186
  • Bottke et al. (2000) Bottke, W. F., Rubincam, D. P., & Burns, J. A. 2000, Icarus, 145, 301
  • Brunetto & Strazzulla (2005) Brunetto, R., & Strazzulla, G. 2005, Icarus, 179, 265
  • Bus (1999) Bus, S. 1999, PhD thesis, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
  • Carruba (2013) Carruba, V. 2013, MNRAS, 431, 3557
  • Cellino et al. (2001) Cellino, A., Zappalà, V., Doressoundiram, A., et al. 2001, Icarus, 152, 225
  • De Sanctis et al. (2012) De Sanctis, M. C., Ammannito, E., Capria, M., et al. 2012, Science (New York, N.Y.), 336, 697
  • DeMeo et al. (2009) DeMeo, F. E., Binzel, R. P., Slivan, S. M., & Bus, S. J. 2009, Icarus, 202, 160
  • Dermott et al. (2018) Dermott, S., A. Christou, A., Li, D., J. J. Kehoe, T., & Malcolm Robinson, J. 2018, Nature Astronomy, 2, doi:10.1038/s41550-018-0482-4
  • Erasmus et al. (2018) Erasmus, N., Mcneill, A., & Mommert, M. 2018, The Astrophysical Journal Supplement Series, 237, 19
  • Erasmus et al. (2017) Erasmus, N., Mommert, M., Trilling, D. E., et al. 2017, The Astronomical Journal, 154, 162
  • Florczak et al. (1998) Florczak, M., Barucci, M., Doressoundiram, A., et al. 1998, Icarus, 133, 233
  • Gaffey (1984) Gaffey, M. J. 1984, Icarus, 60, 83
  • Hsieh & Jewitt (2006) Hsieh, H., & Jewitt, D. 2006, Science, 312, 561
  • Kim et al. (2016) Kim, S. L., Lee, C. U., Park, B. G., et al. 2016, Journal of the Korean Astronomical Society, 49, 37
  • Knezevic et al. (2002) Knezevic, Z., Lemaître, A., & Milani, A. 2002, The Determination of Asteroid Proper Elements, ed. W. Bottke Jr., A. Cellino, P. Paolicchi, & R. Binzel No. 1979, 603–612
  • Lazzaro et al. (1999) Lazzaro, D., Mothé-Diniz, T., Carvano, J., et al. 1999, Icarus, 142, 445
  • Lomb (1976) Lomb, N. R. 1976, Astrophysics and Space Science, 39, 447
  • Masiero et al. (2015) Masiero, J., DeMeo, F., Kasuga, T., & Parker, A. 2015, Asteroid Family Physical Properties, ed. P. Michel, F. DeMeo, & W. Bottke, 323–340
  • Milani et al. (2014) Milani, A., Cellino, A., Knežević, Z., et al. 2014, Icarus, 239, 46
  • Mommert (2017) Mommert, M. 2017, Astronomy and Computing, 18, 47
  • Mommert et al. (2016) Mommert, M., Trilling, D. E., Borth, D., et al. 2016, The Astronomical Journal, 151, 98
  • Nesvorny (2015) Nesvorny, D. 2015, NASA Planetary Data System, 234, EAR
  • Nesvorny et al. (2015) Nesvorny, D., Broz, M., & Carruba, V. 2015, arXiv:1502.01628
  • Parker et al. (2008) Parker, A., Ivezić, Ž., Jurić, M., et al. 2008, Icarus, 198, 138
  • Rivkin & Emery (2010) Rivkin, A., & Emery, J. 2010, Nature, 464, 1322
  • Russell et al. (2012) Russell, C. T., Raymond, C. A., Coradini, A., et al. 2012, Science, 336, 684
  • Scargle (1982) Scargle, J. D. 1982, Astrophys. J., 263, 835
  • Spoto et al. (2015) Spoto, F., Milani, A., & Knežević, Z. 2015, Icarus, 257, 275
  • Vernazza et al. (2008) Vernazza, P., Binzel, R., Thomas, C., et al. 2008, Nature, 454, 858
  • Zappala et al. (1990) Zappala, V., Cellino, A., & Farinella, P. 1990, Astronomical Journal, 100, 2030
  • Ziffer et al. (2011) Ziffer, J., Campins, H., Licandro, J., et al. 2011, Icarus, 213, 538

Appendix A All Data

{longrotatetable}\startlongtable
\floattable
Table 1: Observations and Results
No. Object Obs. Start Obs. Dur. HaaH magnitude was obtained from https://ssd.jpl.nasa.gov/horizons.cgi V V-RbbColors have been corrected for solar colors by subtracting the respective VR and VI solar colors (Binney & Merrifield, 1998). V-IbbColors have been corrected for solar colors by subtracting the respective VR and VI solar colors (Binney & Merrifield, 1998). AmplitudeccLower limit shown in cases where observational duration was insufficient to observe entire light-curve period Rot. PeriodccLower limit shown in cases where observational duration was insufficient to observe entire light-curve period S-type X-type C-type D-type Tax. FamilyddWe cross-correlate with NASA’s Small Bodies Data Ferret database (SBDF) (Nesvorny, 2015) to associate objects from our survey data with known collisional families.
(JD) (h:mm) (mag) (mag) (mag) (mag) (mag) (min) (probability)
0001 (1999 TE21) 2458051.26416 4:08 18.3 20.39 0.010.03 0.050.04 0.35 249 0.293 0.546 0.156 0.004 X -
0002 (2001 QK328) 2457691.46127 2:00 18.0 20.75 0.130.10 0.140.15 0.62 121 0.727 0.053 0.076 0.143 S -
0003 (2001 VH3) 2458048.25593 5:28 16.1 20.83 -0.010.04 0.040.03 0.44 329 0.205 0.650 0.144 0.001 X -
0004 (2002 QK91) 2457691.46127 2:00 17.8 20.77 0.080.10 0.030.17 0.35 121 0.474 0.098 0.317 0.111 - -
0005 (2003 NF13) 2457690.42183 1:37 17.2 19.72 0.090.04 0.110.06 0.23 97 0.842 0.065 0.010 0.083 S -
0006 (2003 QF115) 2457691.38580 1:45 17.6 20.40 0.070.05 0.070.08 0.57 106 0.630 0.139 0.139 0.093 S -
0007 (2003 SO9) 2457722.38685 1:43 17.3 20.11 0.000.04 -0.020.07 0.23 103 0.141 0.234 0.613 0.012 C -
0008 (2005 SN286) 2457691.46127 2:00 16.9 20.80 -0.130.14 -0.060.14 0.37 121 0.062 0.230 0.662 0.045 C -
0009 (2005 SQ51) 2457722.38400 1:47 18.0 20.26 0.090.06 0.100.08 0.25 107 0.787 0.075 0.046 0.093 S -
0010 (2006 AN29) 2457690.35201 1:34 17.9 20.07 0.130.05 0.210.06 0.42 95 0.864 0.004 0.000 0.132 S -
0011 (2006 QN54) 2458050.25465 5:29 18.2 20.73 0.050.03 0.030.04 0.640.11 31353 0.689 0.128 0.182 0.001 S -
0012 (2006 RK11) 2458055.26304 5:17 16.4 19.74 0.010.02 -0.010.03 0.19 318 0.134 0.147 0.719 0.000 C -
0013 (2006 SH410) 2458051.28597 4:37 17.5 21.28 0.040.05 0.110.06 0.30 278 0.517 0.238 0.037 0.208 S -
0014 (2006 SO114) 2458054.26480 4:55 18.1 20.41 0.010.11 -0.040.08 0.27 295 0.269 0.175 0.550 0.006 C -
0015 (2006 TT123) 2458048.26028 5:22 17.2 20.99 -0.060.05 -0.030.04 0.33 323 0.011 0.291 0.698 0.000 C -
0016 (2006 TU68) 2458048.25593 5:28 15.5 20.69 -0.020.06 0.050.03 0.21 329 0.209 0.725 0.065 0.001 X -
0017 (2006 UG215) 2457692.44645 1:00 17.9 19.13 -0.010.04 0.010.05 0.06 60 0.104 0.443 0.451 0.002 - -
0018 (2007 PT43) 2457690.42183 2:19 16.9 19.86 -0.000.05 -0.040.06 0.66 139 0.102 0.186 0.712 0.000 C -
0019 (2007 UJ101) 2458054.26480 5:20 18.5 20.11 0.140.04 0.150.05 0.36 321 0.988 0.001 0.000 0.011 S -
0020 (2008 TO52) 2458051.28168 4:43 17.1 21.03 -0.030.04 -0.060.05 0.38 284 0.021 0.146 0.833 0.000 C -
0021 (2009 BO64) 2457691.46411 1:56 16.7 20.52 0.110.07 0.190.09 0.46 117 0.731 0.036 0.006 0.227 S -
0022 (2009 SV352) 2457690.33738 1:57 18.1 20.31 -0.010.05 0.020.06 0.34 118 0.162 0.446 0.379 0.013 - -
0023 (2009 UJ34) 2457692.44645 1:00 18.8 20.11 0.070.05 0.100.07 0.16 60 0.711 0.123 0.041 0.125 S -
0024 (2010 XF19) 2458163.46671 3:42 17.8 20.77 0.050.04 0.080.05 0.35 223 0.664 0.205 0.055 0.075 S -
0025 (2011 QA50) 2458167.40537 1:17 13.6 21.06 0.080.06 0.090.07 0.19 77 0.696 0.143 0.060 0.101 S -
0026 (2011 SP232) 2457724.38316 1:08 16.5 20.53 0.060.06 0.110.07 0.34 69 0.603 0.167 0.047 0.184 S -
0027 (2011 UU176) 2457691.37970 1:54 16.6 21.00 0.080.10 -0.070.11 0.26 114 0.396 0.067 0.526 0.011 C -
0028 (2011 WJ33) 2457692.38892 1:20 15.5 20.18 0.020.04 0.100.04 0.16 80 0.369 0.471 0.017 0.143 - -
0029 (2012 JN22) 2458047.25601 5:24 16.6 20.72 0.050.03 0.060.04 0.32 324 0.728 0.197 0.070 0.005 S -
0030 (2012 LB9) 2458050.25874 5:20 17.0 21.02 0.090.05 0.090.07 0.36 321 0.837 0.055 0.038 0.070 S -
0031 (2012 PO23) 2458168.40251 3:15 17.9 19.76 0.010.05 -0.060.05 0.33 196 0.097 0.060 0.844 0.000 C -
0032 (2012 SO37) 2458051.27285 4:56 16.7 21.00 0.050.06 0.100.05 0.33 297 0.551 0.299 0.028 0.123 S -
0033 (2012 VR96) 2457692.44645 1:00 17.2 19.21 0.050.04 0.000.06 0.16 60 0.468 0.124 0.402 0.005 - -
0034 (2012 XC136) 2457730.42038 1:30 17.4 19.91 0.070.04 0.070.05 0.25 90 0.778 0.148 0.050 0.024 S -
0035 (2013 AH24) 2457724.34608 0:51 17.6 20.50 0.360.12 -0.100.27 0.51 51 0.793 0.000 0.207 0.001 S -
0036 (2013 AJ160) 2458165.40164 5:19 16.7 21.14 0.010.08 0.010.06 0.32 320 0.340 0.308 0.341 0.012 - -
0037 (2013 GK130) 2458164.41350 4:21 15.4 20.51 -0.130.07 -0.190.05 1.070.09 40093 0.000 0.000 1.000 0.000 C -
0038 (2013 VR15) 2458049.25597 5:24 16.9 20.80 0.090.03 0.130.04 0.31 325 0.924 0.021 0.000 0.056 S -
0039 (2014 DH97) 2457722.38400 1:45 16.6 20.53 0.050.06 -0.070.09 0.32 105 0.243 0.059 0.694 0.004 C -
0040 (2014 JD45) 2457722.38400 1:47 16.1 19.99 0.010.03 -0.020.06 0.32 107 0.134 0.210 0.650 0.005 C -
0041 (2014 UP20) 2458049.26046 5:18 18.3 21.08 0.020.07 -0.010.06 0.61 318 0.309 0.217 0.468 0.006 - -
0042 (2015 CT41) 2458047.25601 5:24 16.7 20.64 0.050.03 0.060.04 0.35 324 0.699 0.225 0.068 0.008 S -
0043 (2015 DQ37) 2458051.28168 4:43 17.7 20.87 0.130.03 0.190.04 0.28 284 0.952 0.000 0.000 0.048 S -
0044 (2015 DZ16) 2458049.25597 5:21 17.1 20.57 -0.060.04 -0.090.04 0.810.09 41092 0.000 0.024 0.976 0.000 C -
0045 (2015 EW7) 2458048.25593 5:28 17.0 21.54 0.040.07 -0.070.10 0.41 329 0.237 0.097 0.653 0.012 C -
0046 (2015 OM90) 2458166.40297 2:45 17.3 20.14 0.060.03 0.100.04 0.28 165 0.741 0.185 0.009 0.065 S -
0047 (2016 PB75) 2457690.33738 1:55 17.7 20.11 -0.060.09 -0.030.07 0.31 116 0.086 0.276 0.636 0.002 C -
0048 (2016 PY5) 2458165.40164 5:07 17.6 20.70 0.030.07 -0.090.10 0.990.10 30368 0.177 0.086 0.732 0.005 C -
0049 (2016 SK21) 2457690.33738 1:57 17.7 20.35 0.130.06 0.190.06 0.38 118 0.877 0.007 0.000 0.116 S -
0050 (2016 UA23) 2457692.39380 1:11 19.4 20.83 0.080.07 0.060.10 0.15 71 0.649 0.098 0.170 0.083 S -
0051 (2016 UG69) 2457692.39079 1:13 17.9 20.43 -0.090.05 -0.100.07 0.22 73 0.001 0.094 0.905 0.000 C -
0052 (2016 UG72) 2457692.39079 1:17 17.9 20.72 -0.070.06 0.020.08 0.27 77 0.031 0.577 0.354 0.038 X -
0053 (2016 UG75) 2457692.38892 1:20 17.1 20.87 -0.020.05 -0.050.07 0.55 80 0.060 0.206 0.731 0.002 C -
0054 (2016 UG83) 2457692.38892 1:20 18.8 20.22 0.030.04 0.050.05 0.18 80 0.412 0.383 0.170 0.035 - -
0055 (2016 UM15) 2457692.38892 1:20 17.2 20.69 0.050.05 0.110.07 0.20 80 0.571 0.208 0.041 0.181 S -
0056 (2016 UO69) 2457692.38892 1:20 17.7 20.49 0.010.04 0.020.07 0.40 80 0.238 0.363 0.368 0.031 - -
0057 (2016 UR73) 2457692.39380 1:12 18.7 20.45 0.000.05 0.040.06 0.36 73 0.228 0.452 0.280 0.040 - -
0058 (2016 US77) 2457692.38892 1:20 18.2 20.40 -0.000.04 -0.000.05 0.17 80 0.151 0.331 0.516 0.003 C -
0059 (2016 US92) 2457692.39079 1:17 19.5 20.73 0.060.07 0.090.07 0.13 77 0.616 0.201 0.071 0.111 S -
0060 (2016 UY57) 2457692.38892 1:20 18.9 20.70 0.030.05 0.050.06 0.53 80 0.449 0.303 0.205 0.043 - -
0061 (2017 BG12) 2457802.39311 0:45 16.7 20.13 0.090.05 0.090.10 0.18 46 0.761 0.044 0.087 0.108 S -
0062 (2017 SA32) 2458048.25593 5:28 17.1 20.71 -0.110.04 -0.120.03 0.35 329 0.000 0.000 1.000 0.000 C -
0063 (2017 TB9) 2458049.25597 5:24 16.7 20.72 -0.000.03 -0.010.04 0.450.08 17017 0.081 0.227 0.692 0.000 C -
0064 (2017 TQ8) 2458050.25465 5:29 15.3 19.82 -0.080.02 -0.100.02 0.530.06 659123 0.000 0.000 1.000 0.000 C -
0065 (2017 UB21) 2458049.25597 5:24 15.9 21.13 0.080.04 0.180.04 0.48 325 0.660 0.017 0.000 0.322 S -
0066 (2017 UC22) 2458050.29150 4:36 17.7 21.16 -0.010.05 0.010.08 0.49 276 0.139 0.388 0.439 0.035 - -
0067 (2017 UD20) 2458049.25597 5:18 18.1 21.15 0.010.07 -0.250.08 0.950.12 21227 0.005 0.001 0.993 0.000 C -
0068 (2017 UE21) 2458049.25597 5:24 18.8 21.03 0.010.08 -0.020.08 0.710.11 31163 0.255 0.220 0.512 0.014 C -
0069 (2017 UG24) 2458051.27722 4:50 16.8 20.90 0.130.03 0.200.04 0.40 290 0.944 0.000 0.000 0.056 S -
0070 (2017 UN19) 2458050.25465 5:29 16.7 19.98 0.050.02 0.050.02 0.200.06 18618 0.905 0.077 0.018 0.000 S -
0071 (2017 UN24) 2458051.27285 4:56 16.7 20.96 0.030.04 0.120.04 0.31 297 0.433 0.311 0.007 0.249 - -
0072 (2017 UW19) 2458048.26028 5:16 17.7 21.36 0.040.05 0.030.06 0.48 316 0.464 0.224 0.297 0.016 - -
0073 (2017 UX23) 2458051.27285 4:56 17.7 21.03 0.140.04 0.160.04 0.33 297 0.962 0.001 0.000 0.037 S -
0074 100832 (1998 HS10) 2457692.38892 1:20 16.3 19.56 -0.040.02 -0.030.03 0.15 80 0.001 0.335 0.664 0.000 C -
0075 101083 (1998 RK27) 2458167.40537 1:17 15.1 21.22 0.140.06 0.240.07 0.18 77 0.831 0.004 0.000 0.165 S -
0076 10144 (1994 AB2) 2458055.26304 5:17 13.0 17.56 0.070.01 0.090.01 0.290.03 23132 0.984 0.016 0.000 0.000 S -
0077 101909 (1999 RU6) 2458049.25597 5:24 16.5 19.41 -0.020.01 -0.040.02 0.16 325 0.000 0.037 0.963 0.000 C -
0078 102079 (1999 RV147) 2458167.40537 1:20 15.8 19.29 0.100.02 0.120.03 0.120.04 8721 0.992 0.002 0.000 0.006 S -
0079 10221 Kubrick (1997 UM9) 2457724.28943 1:08 13.9 17.94 0.140.02 0.110.03 0.08 68 1.000 0.000 0.000 0.000 S -
0080 102316 (1999 TN100) 2458049.25597 5:24 16.5 19.14 0.080.01 0.060.01 0.260.03 412108 0.998 0.002 0.000 0.000 S -
0081 102405 (1999 TP172) 2458164.41350 4:21 16.3 20.38 0.090.03 0.080.03 0.770.08 26547 0.981 0.017 0.000 0.001 S -
0082 10263 Vadimsimona (1976 SE5) 2457796.45814 0:33 12.9 15.89 0.000.04 0.070.06 0.03 33 0.249 0.515 0.144 0.091 X -
0083 10301 Kataoka (1989 FH) 2458050.25465 4:38 14.5 18.27 0.070.01 0.080.01 0.310.04 31666 0.996 0.004 0.000 0.000 S -
0084 103139 (1999 XS205) 2458050.25465 5:29 15.3 18.55 -0.050.01 -0.090.01 0.07 329 0.000 0.000 1.000 0.000 C -
0085 103246 (2000 AQ4) 2458166.40297 2:45 15.6 19.45 -0.060.02 -0.050.03 0.08 165 0.000 0.186 0.814 0.000 C -
0086 103360 (2000 AS94) 2458166.40297 2:45 16.2 19.48 0.140.02 -0.080.03 0.12 165 0.589 0.000 0.411 0.000 S -
0087 103469 (2000 AK211) 2457798.46669 0:53 15.1 19.52 0.100.12 0.190.20 0.31 53 0.599 0.074 0.106 0.220 S -
0088 10435 Tjeerd (6064 P-L) 2457690.33738 1:57 13.6 17.57 0.090.02 0.110.05 0.280.04 23544 0.981 0.001 0.001 0.017 S -
0089 10461 Dawilliams (1978 XU) 2457728.49022 0:57 13.9 17.59 0.020.05 -0.020.06 0.32 58 0.224 0.186 0.584 0.005 C -
0090 104989 (2000 JH84) 2458049.26469 5:12 15.1 19.60 -0.060.01 -0.060.02 0.12 312 0.000 0.025 0.975 0.000 C -
0091 105014 (2000 KK13) 2458050.25465 5:29 15.3 20.15 0.070.02 0.090.02 0.18 329 0.943 0.053 0.000 0.005 S -
0092 105087 (2000 KB79) 2458047.25601 5:24 14.7 19.25 -0.030.01 -0.050.02 0.27 324 0.000 0.027 0.973 0.000 C -
0093 105280 (2000 QD35) 2458168.40251 3:15 15.0 18.82 0.010.03 0.030.04 0.10 196 0.293 0.397 0.309 0.001 - -
0094 105555 (2000 RK53) 2457724.31706 0:28 14.6 19.07 0.030.05 0.070.06 0.08 28 0.448 0.343 0.124 0.086 - -
0095 105770 (2000 SA108) 2458164.41350 4:21 15.9 21.21 -0.070.05 -0.070.05 0.46 261 0.003 0.131 0.866 0.000 C -
0096 105786 (2000 SD120) 2457722.38400 1:47 16.9 19.13 0.060.03 0.090.03 0.12 107 0.854 0.118 0.003 0.025 S -
0097 105934 (2000 SM224) 2457724.28943 1:08 15.1 20.38 0.090.09 0.080.13 1.230.15 13625 0.597 0.107 0.165 0.131 S -
0098 105981 (2000 SS268) 2457730.42646 1:21 15.0 18.66 0.010.03 0.030.04 0.12 81 0.261 0.397 0.342 0.001 - -
0099 106131 (2000 TO39) 2457690.33738 1:57 15.0 19.15 0.030.02 0.120.03 0.11 118 0.379 0.437 0.001 0.183 - -
0100 106169 (2000 TP67) 2458166.40297 2:45 15.8 19.79 0.060.03 0.050.03 0.230.05 15629 0.832 0.128 0.039 0.001 S -
0101 106303 (2000 UO87) 2457691.46127 1:56 14.8 19.36 0.050.04 0.030.04 0.35 116 0.618 0.172 0.206 0.004 S -
0102 106330 (2000 UU104) 2457692.44645 1:00 14.3 17.77 0.040.04 0.150.06 0.02 60 0.387 0.153 0.005 0.454 - -
0103 106357 (2000 VD5) 2457724.28943 1:08 14.9 19.97 -0.020.05 -0.060.08 0.20 68 0.053 0.183 0.758 0.005 C -
0104 106373 (2000 VP11) 2457724.34310 0:55 14.9 18.75 -0.050.04 -0.050.05 0.12 55 0.007 0.209 0.784 0.000 C -
0105 10709 Ottofranz (1982 BE1) 2458047.25601 5:24 13.4 16.91 0.090.01 0.130.01 0.14 324 1.000 0.000 0.000 0.000 S -
0106 107199 (2001 BA32) 2458047.25601 5:24 16.3 18.63 -0.000.01 0.020.02 0.120.04 31152 0.014 0.571 0.416 0.000 X -
0107 107205 (2001 BW33) 2458049.25597 5:24 16.4 20.25 -0.060.02 -0.080.03 0.270.06 30255 0.000 0.021 0.979 0.000 C -
0108 107506 (2001 DM49) 2458048.25593 5:28 16.0 20.14 0.060.04 0.150.02 0.26 329 0.657 0.064 0.000 0.279 S -
0109 107529 (2001 DB65) 2458055.29438 4:29 16.7 20.57 -0.100.11 -0.070.07 0.39 269 0.038 0.108 0.854 0.000 C -
0110 107578 (2001 DB96) 2457691.42249 0:52 16.1 20.03 0.020.09 0.060.09 0.28 53 0.390 0.324 0.173 0.113 - -
0111 107633 (2001 EA12) 2458054.26480 5:20 16.2 20.35 -0.020.09 -0.070.09 0.38 321 0.098 0.150 0.748 0.004 C -
0112 10800 (1992 OM8) 2458054.26480 5:23 14.4 18.35 0.050.01 0.080.01 0.15 324 0.846 0.154 0.000 0.000 S -
0113 108280 (2001 HA60) 2458163.46671 3:42 15.8 20.05 -0.070.02 -0.090.03 0.32 223 0.000 0.006 0.994 0.000 C -
0114 108477 (2001 KL58) 2457796.29214 1:07 15.0 19.85 0.170.10 0.170.10 0.29 68 0.851 0.027 0.015 0.108 S -
0115 10889 (1997 AO1) 2458048.25593 5:28 11.7 17.46 0.040.04 0.140.01 0.06 329 0.531 0.132 0.000 0.337 S -
0116 10919 Pepikzicha (1998 AQ8) 2457798.46669 0:53 13.8 17.88 0.040.03 0.110.05 0.10 53 0.516 0.292 0.018 0.174 S -
0117 10922 (1998 BG2) 2457692.38892 1:20 13.8 16.69 0.080.02 0.100.03 0.10 80 0.986 0.010 0.000 0.004 S -
0118 109513 (2001 QQ236) 2458049.25597 4:14 14.5 18.84 0.030.01 0.080.02 0.28 254 0.321 0.679 0.000 0.000 X -
0119 109686 (2001 RF31) 2458054.26480 5:23 14.9 19.60 0.070.07 0.100.04 0.370.07 22229 0.686 0.242 0.012 0.060 S -
0120 109691 (2001 RR35) 2458048.25593 5:22 14.8 19.43 0.110.04 0.120.02 0.600.04 36678 0.965 0.025 0.000 0.010 S -
0121 109943 (2001 SY42) 2458051.26416 5:09 15.7 19.38 0.050.01 0.020.02 0.13 309 0.901 0.001 0.097 0.000 S -
0122 111559 (2002 AN2) 2458050.25465 5:29 14.3 17.21 -0.010.01 -0.010.01 0.170.03 659109 0.000 0.104 0.896 0.000 C -
0123 111618 (2002 AR114) 2457691.37970 1:54 14.8 18.79 -0.030.04 -0.010.05 0.09 114 0.033 0.410 0.557 0.001 C -
0124 11184 Postma (1998 HJ9) 2458165.40164 5:19 12.7 17.64 -0.040.01 -0.070.01 0.110.03 31880 0.000 0.002 0.998 0.000 C -
0125 111913 Davidgans (2002 GD) 2457690.42183 2:19 14.7 19.04 0.060.03 0.090.04 0.650.09 27949 0.793 0.158 0.006 0.043 S -
0126 111920 (2002 GX11) 2458049.25597 5:24 15.4 20.13 -0.080.02 -0.100.02 0.370.05 21828 0.000 0.001 1.000 0.000 C -
0127 112061 (2002 JT14) 2458049.25597 4:49 15.5 20.09 -0.020.02 0.010.02 0.240.05 20929 0.009 0.625 0.367 0.000 X -
0128 112219 (2002 KV) 2458055.27192 5:05 16.1 19.57 0.100.02 0.040.02 0.31 305 1.000 0.000 0.000 0.000 S -
0129 112371 (2002 NV20) 2457690.38513 0:48 16.3 19.39 0.090.05 0.060.07 0.16 49 0.826 0.061 0.082 0.032 S -
0130 113130 (2002 RA85) 2457691.37970 1:54 15.0 17.97 -0.070.02 -0.090.02 0.310.05 22941 0.000 0.004 0.996 0.000 C -
0131 114041 (2002 VM11) 2457724.34904 0:46 17.2 19.55 -0.080.06 -0.120.08 0.25 47 0.003 0.086 0.911 0.000 C -
0132 114058 (2002 VX22) 2458168.40251 3:22 16.3 19.62 0.070.03 0.140.04 0.10 202 0.765 0.053 0.001 0.181 S -
0133 114215 (2002 VM110) 2458164.41350 4:21 15.3 19.25 0.090.01 0.110.02 0.150.04 20231 1.000 0.000 0.000 0.000 S -
0134 114235 (2002 VZ133) 2457691.46127 2:00 16.2 19.40 0.110.03 0.110.04 0.15 121 0.984 0.006 0.000 0.010 S -
0135 114612 (2003 DV12) 2458163.46671 3:42 15.4 20.18 -0.030.07 -0.000.05 0.250.07 17128 0.148 0.380 0.471 0.001 - -
0136 114756 (2003 HC45) 2457692.38892 1:20 16.0 19.46 0.040.02 0.040.03 0.25 80 0.658 0.199 0.141 0.002 S -
0137 114761 (2003 HN47) 2457692.38892 1:20 15.2 20.46 0.060.04 0.080.05 0.86 80 0.707 0.193 0.050 0.050 S -
0138 115056 (2003 RZ6) 2458165.40164 5:19 15.6 20.14 0.070.02 0.120.02 0.36 320 0.950 0.025 0.000 0.025 S -
0139 115082 (2003 SP6) 2458053.25946 4:21 16.3 19.15 -0.060.15 0.050.08 0.36 262 0.245 0.450 0.242 0.063 - -
0140 115435 (2003 TM4) 2458054.26480 5:23 15.6 19.36 -0.030.02 -0.020.03 0.430.06 22730 0.001 0.305 0.694 0.000 C -
0141 115529 (2003 UG49) 2458165.40164 5:19 15.6 19.95 0.060.02 0.090.02 0.490.05 24235 0.904 0.094 0.000 0.002 S -
0142 115568 (2003 UZ82) 2457765.28694 1:01 15.5 19.80 -0.040.07 -0.010.10 0.22 62 0.086 0.348 0.532 0.035 C -
0143 115637 (2003 UH126) 2457691.54720 1:27 15.2 18.86 0.020.03 0.080.05 0.11 87 0.292 0.533 0.076 0.100 X -
0144 115835 (2003 UD260) 2457800.44661 0:54 15.5 19.07 -0.060.09 -0.020.17 0.41 54 0.077 0.267 0.526 0.129 C -
0145 11625 Francelinda (1996 UL1) 2458055.26304 5:17 13.7 18.24 0.100.05 0.300.01 0.17 318 0.649 0.000 0.000 0.351 S -
0146 11628 Katuhikoikeda (1996 VB5) 2457692.44645 1:00 13.9 16.49 0.060.03 0.110.05 0.08 60 0.730 0.137 0.009 0.124 S -
0147 116303 (2003 YK61) 2457802.50174 0:55 16.0 19.66 0.030.06 -0.030.07 0.21 55 0.250 0.160 0.583 0.007 C -
0148 116619 (2004 BY117) 2457691.46127 2:00 15.7 19.25 -0.020.03 0.040.04 0.52 121 0.051 0.738 0.209 0.002 X -
0149 11662 (1997 GL23) 2457692.44645 1:00 13.3 17.31 -0.090.04 -0.090.04 0.15 60 0.000 0.034 0.966 0.000 C -
0150 116899 (2004 FB142) 2457692.38892 1:02 16.4 19.10 0.080.03 -0.100.03 0.66 63 0.043 0.000 0.957 0.000 C -
0151 11735 (1998 KN56) 2458163.46671 3:42 13.8 19.14 0.050.02 0.080.02 0.260.04 446115 0.818 0.179 0.000 0.002 S -
0152 11780 Thunder Bay (1942 TB) 2457768.50255 2:00 13.1 17.89 0.050.06 0.050.07 0.18 120 0.558 0.188 0.203 0.051 S -
0153 117873 (2212 P-L) 2458165.40164 5:19 16.8 20.07 0.060.05 0.150.02 0.700.06 35178 0.573 0.075 0.000 0.352 S -
0154 118195 (1994 SP7) 2457692.44645 1:00 15.4 19.95 -0.040.05 -0.090.07 0.13 60 0.014 0.099 0.887 0.000 C -
0155 11820 Mikiyasato (1981 EP38) 2458168.40251 3:18 14.1 19.24 0.030.03 0.070.04 0.420.07 398233 0.487 0.395 0.081 0.037 - -
0156 118239 (1997 KX) 2457722.42167 0:52 14.2 19.35 0.100.03 0.170.04 0.12 53 0.851 0.004 0.000 0.145 S -
0157 118308 (1998 VT7) 2457798.50513 1:09 16.3 19.46 0.260.12 0.230.14 0.35 69 0.945 0.006 0.005 0.045 S -
0158 11840 (1986 QR2) 2457766.28699 2:15 13.9 17.93 0.020.03 -0.010.03 0.28 135 0.190 0.067 0.743 0.000 C -
0159 11880 (1990 QQ4) 2458051.26003 5:15 13.4 17.11 -0.050.01 -0.080.01 0.110.03 439121 0.000 0.000 1.000 0.000 C -
0160 119183 (2001 QV82) 2458055.26304 5:11 16.0 18.64 0.070.01 0.100.01 0.100.03 27250 0.989 0.011 0.000 0.000 S -
0161 119202 (2001 QN128) 2457691.37970 1:54 16.2 19.92 -0.020.03 0.010.04 0.23 114 0.058 0.525 0.416 0.001 X -
0162 119254 (2001 RL28) 2457722.38400 1:47 16.1 18.16 0.060.02 0.070.02 0.070.04 12235 0.881 0.116 0.003 0.000 S -
0163 119463 (2001 TL208) 2458048.25593 5:28 15.8 19.66 0.050.04 0.120.02 0.560.04 27941 0.722 0.211 0.000 0.067 S -
0164 119707 (2001 XA185) 2457724.38316 1:06 15.6 19.91 -0.050.07 -0.150.06 0.15 66 0.006 0.009 0.985 0.000 C -
0165 119853 (2002 CR75) 2457692.38892 1:20 16.0 19.57 0.030.03 0.030.03 0.14 80 0.558 0.211 0.231 0.000 S -
0166 120148 (2003 GO51) 2458049.25597 5:24 15.7 20.11 0.070.02 0.090.02 0.37 325 0.912 0.086 0.000 0.002 S -
0167 120446 (1981 EF21) 2457690.42183 2:10 15.9 20.11 0.030.06 0.030.07 0.44 130 0.377 0.271 0.316 0.036 - -
0168 120550 (1995 BS10) 2458048.25593 5:28 16.3 19.49 0.060.04 0.130.02 0.260.04 37080 0.763 0.101 0.000 0.137 S -
0169 120593 (1995 SR62) 2458051.26860 5:02 16.4 20.67 -0.030.03 -0.010.04 0.520.09 23733 0.017 0.448 0.535 0.000 C -
0170 120728 (1997 SG32) 2458163.46671 3:42 16.0 19.98 -0.020.02 0.000.04 0.620.05 26955 0.018 0.428 0.554 0.000 C -
0171 120933 (1998 SL147) 2458051.26860 5:02 16.6 18.50 -0.060.01 -0.080.01 0.12 303 0.000 0.000 1.000 0.000 C -
0172 120968 (1998 VH32) 2457690.42183 2:21 16.3 18.23 0.160.02 0.220.03 0.200.06 18745 0.999 0.000 0.000 0.001 S -
0173 121079 (1999 FP4) 2457798.50513 1:09 16.6 19.16 0.280.10 0.370.08 0.29 69 0.982 0.000 0.000 0.018 S -
0174 121245 (1999 RO51) 2457692.44645 1:00 15.6 18.84 0.020.04 0.080.05 0.10 60 0.386 0.461 0.070 0.082 - -
0175 12125 Jamesjones (1999 RS4) 2457724.34310 0:55 13.4 18.34 -0.050.04 -0.080.04 0.05 55 0.002 0.058 0.940 0.000 C -
0176 121344 (1999 TB29) 2457692.44971 0:55 15.4 18.37 0.090.05 0.220.06 0.70 55 0.594 0.005 0.000 0.401 S -
0177 121986 (2000 ER180) 2457802.50174 0:55 16.0 19.93 0.020.08 -0.080.15 0.81 55 0.175 0.124 0.656 0.045 C -
0178 122120 (2000 JJ15) 2457724.38316 1:08 16.5 20.47 0.020.08 -0.030.07 0.27 69 0.272 0.167 0.558 0.004 C -
0179 122184 (2000 KA58) 2457722.38400 1:47 15.9 19.59 0.080.03 0.160.04 0.18 107 0.782 0.008 0.000 0.210 S -
0180 122195 (2000 LU2) 2457802.42659 0:37 16.4 20.10 -0.080.06 -0.110.06 0.08 37 0.002 0.062 0.937 0.000 C -
0181 122770 (2000 SB75) 2458049.25597 5:24 15.3 19.11 0.060.01 0.070.01 0.270.03 18218 0.945 0.055 0.000 0.000 S -
0182 122842 (2000 SC122) 2457690.33738 1:57 14.3 18.57 0.060.02 0.120.03 0.350.05 23540 0.824 0.061 0.000 0.115 S -
0183 123257 (2000 UT73) 2458051.26416 5:09 15.6 18.75 0.060.04 0.100.02 0.41 309 0.725 0.267 0.000 0.008 S -
0184 123621 (2000 YK27) 2457687.38022 3:03 14.6 19.18 -0.110.02 -0.110.02 0.180.04 23359 0.000 0.000 1.000 0.000 C -
0185 123934 (2001 EU14) 2457730.42038 1:30 14.5 19.56 0.060.04 0.100.04 0.28 90 0.706 0.199 0.017 0.078 S -
0186 123946 (2001 ER23) 2458166.40297 2:54 14.7 19.33 0.070.02 0.120.03 0.540.04 20843 0.899 0.046 0.000 0.055 S -
0187 124619 (2001 SC49) 2457802.50174 0:46 15.8 20.19 0.130.10 -0.040.23 0.22 47 0.521 0.025 0.403 0.050 S -
0188 12463 (1997 AL7) 2458050.25465 5:29 13.7 17.43 0.090.01 0.110.01 0.280.04 15814 1.000 0.000 0.000 0.000 S -
0189 124729 (2001 SB173) 2458165.40164 5:19 12.7 20.46 -0.000.02 0.070.03 0.46 320 0.096 0.846 0.051 0.007 X -
0190 124802 (2001 SO278) 2457798.46669 0:53 15.9 19.00 0.190.08 0.040.10 0.19 53 0.911 0.010 0.068 0.010 S -
0191 125016 (2001 TJ174) 2457692.38892 1:20 16.6 19.85 0.070.03 -0.030.05 0.11 80 0.503 0.007 0.490 0.000 S -
0192 125131 (2001 UU57) 2458054.26480 5:20 16.8 20.26 -0.070.11 -0.040.09 0.33 321 0.103 0.246 0.640 0.010 C -
0193 12523 (1998 HH100) 2457802.50174 0:55 13.2 18.25 -0.030.03 -0.030.04 0.14 55 0.008 0.217 0.775 0.000 C -
0194 125533 (2001 WK85) 2458054.26480 3:51 17.3 20.71 0.070.06 0.070.06 0.31 232 0.659 0.200 0.075 0.067 S -
0195 125831 (2001 XU176) 2458053.25946 4:21 15.9 19.06 0.110.02 0.160.02 0.37 262 0.984 0.000 0.000 0.016 S -
0196 125969 (2001 YL13) 2457802.50174 0:55 16.2 19.81 0.080.08 -0.070.10 0.14 55 0.385 0.045 0.564 0.006 C -
0197 12616 Lochner (4874 P-L) 2457692.38892 1:20 14.7 17.87 0.060.02 0.090.03 0.13 80 0.904 0.088 0.000 0.008 S -
0198 12667 (1979 DF) 2457692.38892 1:20 13.3 17.46 -0.090.02 -0.090.03 0.37 80 0.000 0.003 0.998 0.000 C -
0199 126672 (2002 CL215) 2457692.44645 1:00 16.4 20.00 0.060.06 0.160.07 0.17 60 0.498 0.116 0.006 0.380 - -
0200 126830 (2002 ES61) 2458164.41350 4:21 15.9 19.77 0.100.02 0.110.02 0.26 261 0.999 0.000 0.000 0.000 S -
0201 127038 (2002 GR35) 2458055.27192 4:58 16.2 20.41 0.030.07 0.100.06 0.42 299 0.429 0.366 0.051 0.154 - -
0202 127138 (2002 GD112) 2458049.25597 5:21 15.7 20.32 -0.050.02 -0.040.03 1.020.06 541114 0.000 0.184 0.816 0.000 C -
0203 127467 (2002 RX41) 2457690.33738 1:57 17.0 19.61 0.030.03 0.100.04 0.18 118 0.401 0.454 0.013 0.131 - -
0204 127495 (2002 TW30) 2457691.37970 0:59 15.6 19.37 -0.080.03 -0.100.05 0.24 60 0.000 0.043 0.957 0.000 C -
0205 127664 (2003 DV14) 2458054.26480 5:20 14.7 19.81 -0.050.03 -0.080.04 0.29 321 0.000 0.064 0.936 0.000 C -
0206 12768 (1994 EQ1) 2457690.33738 1:05 14.2 17.19 0.060.02 0.050.03 0.07 66 0.930 0.060 0.010 0.000 S -
0207 127772 (2003 FO52) 2458047.25601 5:24 16.2 20.88 0.090.04 0.070.04 0.510.10 517122 0.916 0.051 0.021 0.012 S -
0208 128419 (2004 LK29) 2457692.44645 1:00 16.6 19.89 -0.060.04 -0.100.06 0.14 60 0.002 0.082 0.916 0.000 C -
0209 128736 (2004 RJ156) 2458165.45124 3:58 16.6 21.20 0.120.06 0.090.07 0.860.12 29770 0.890 0.034 0.035 0.040 S -
0210 12880 Juliegrady (1998 QM25) 2457691.37970 1:54 14.6 19.25 0.070.03 0.110.03 0.42 114 0.856 0.083 0.000 0.061 S -
0211 129419 (2619 T-3) 2457691.42249 0:52 14.4 19.55 -0.010.05 0.050.06 0.13 53 0.193 0.511 0.246 0.050 X -
0212 129442 (1981 EC15) 2458163.46671 3:42 15.8 18.68 0.070.01 0.120.02 0.18 223 0.982 0.003 0.000 0.015 S -
0213 129924 (1999 TK127) 2457722.38400 1:47 16.2 19.23 0.040.02 0.060.03 0.39 107 0.645 0.271 0.080 0.004 S -
0214 129925 (1999 TM127) 2457692.38892 1:20 15.7 19.43 0.070.02 0.120.04 0.17 80 0.895 0.038 0.001 0.066 S -
0215 129929 (1999 TV141) 2458167.40537 1:20 15.7 20.01 -0.040.03 -0.080.05 0.18 81 0.001 0.086 0.913 0.000 C -
0216 13033 Gardon (1989 TB5) 2457728.49022 0:57 13.9 18.41 0.120.05 0.060.07 0.40 58 0.917 0.022 0.046 0.015 S -
0217 130870 (2000 VK1) 2457692.38892 1:20 15.1 17.27 0.080.02 0.130.03 0.280.03 16030 0.961 0.004 0.000 0.035 S -
0218 130953 (2000 WT79) 2457724.28943 1:08 16.2 20.07 0.170.06 0.260.07 0.17 68 0.924 0.001 0.000 0.075 S -
0219 130967 (2000 WX112) 2457724.34310 0:55 15.5 18.99 0.080.04 0.040.05 0.12 55 0.832 0.050 0.107 0.011 S -
0220 131062 (2000 YG69) 2458168.40251 3:22 16.1 19.05 0.030.03 0.030.04 0.170.05 176133 0.503 0.225 0.271 0.001 S -
0221 131104 (2001 AN28) 2458049.25597 5:24 15.3 20.21 0.070.02 0.100.02 0.430.05 650124 0.933 0.059 0.000 0.008 S -
0222 131166 (2001 CK30) 2457692.44645 1:00 15.6 20.27 -0.020.13 0.130.09 0.45 60 0.285 0.383 0.067 0.265 - -
0223 131205 (2001 DK36) 2457690.38513 0:48 15.6 19.76 0.160.08 0.130.12 0.22 49 0.879 0.020 0.039 0.063 S -
0224 13133 Jandecleir (1994 PL34) 2457724.28943 1:08 14.7 18.84 0.170.02 0.190.04 0.940.04 13626 1.000 0.000 0.000 0.000 S -
0225 131367 (2001 KS16) 2457800.44661 0:54 14.8 19.48 -0.040.11 0.100.12 0.34 54 0.199 0.368 0.189 0.243 - -
0226 131530 (2001 UO79) 2458054.26480 5:01 16.6 19.93 -0.050.03 -0.110.05 0.340.07 20431 0.000 0.029 0.971 0.000 C -
0227 131740 (2001 YH117) 2457802.50174 0:55 16.4 20.04 0.030.09 -0.060.11 0.19 55 0.255 0.127 0.601 0.018 C -
0228 13194 (1997 CA1) 2458166.40297 2:54 14.6 17.90 0.090.01 0.100.02 0.20 175 1.000 0.000 0.000 0.000 S -
0229 13198 Banpeiyu (1997 DT) 2457722.38400 1:47 15.2 18.64 0.080.02 0.100.03 0.150.06 21437 0.971 0.019 0.000 0.009 S -
0230 132515 (2002 JT48) 2457724.34161 0:57 15.6 19.94 0.210.08 0.070.10 0.25 58 0.968 0.004 0.022 0.007 S -
0231 132695 (2002 NV34) 2457724.28943 1:08 15.7 20.45 0.150.07 0.220.12 0.69 68 0.865 0.010 0.009 0.117 S -
0232 133983 (2004 TV282) 2458163.46671 3:42 16.2 19.64 0.060.02 0.070.02 0.58 223 0.886 0.111 0.002 0.001 S -
0233 134158 (2005 AJ75) 2458055.26304 5:11 16.2 20.51 0.000.07 0.120.07 0.44 312 0.279 0.397 0.037 0.288 - -
0234 134892 (2000 SY256) 2458163.46671 3:42 14.8 19.40 0.100.02 0.130.02 0.12 223 0.997 0.000 0.000 0.003 S -
0235 134906 (2000 XO33) 2458166.40297 2:54 16.1 19.42 -0.020.02 -0.040.03 0.150.05 16031 0.001 0.079 0.920 0.000 C -
0236 13520 Felicienrops (1990 VC6) 2457796.44027 0:58 13.2 17.11 -0.030.04 -0.020.04 0.05 59 0.034 0.343 0.623 0.000 C -
0237 135659 (2002 LE51) 2458047.25601 5:24 16.4 20.12 0.100.02 -0.080.03 0.18 324 0.189 0.000 0.811 0.000 C -
0238 135693 (2002 OB26) 2458163.46671 3:42 16.1 19.72 0.020.02 0.010.03 0.17 223 0.292 0.159 0.549 0.000 C -
0239 135884 (2002 TF49) 2458166.40297 2:48 15.1 19.79 0.080.03 0.160.03 0.360.07 29868 0.834 0.006 0.000 0.160 S -
0240 135905 (2002 TR90) 2458163.46671 3:42 15.4 20.08 -0.010.03 0.050.03 0.900.05 44673 0.081 0.804 0.114 0.002 X -
0241 135983 (2002 UD9) 2458163.46671 3:42 15.4 20.71 -0.000.05 -0.010.06 0.58 223 0.154 0.322 0.519 0.005 C -
0242 135993 (2002 VP2) 2458165.40164 5:19 15.6 20.02 -0.020.02 0.010.02 0.580.06 21628 0.005 0.539 0.456 0.000 X -
0243 136094 (2003 BC51) 2457692.44645 1:00 16.9 19.74 0.060.05 0.110.06 0.43 60 0.630 0.168 0.025 0.177 S -
0244 136218 (2003 WR73) 2458164.41350 4:21 16.6 20.42 0.090.03 0.080.03 0.930.08 27954 0.966 0.029 0.001 0.004 S -
0245 136331 (2004 BG108) 2458049.25597 5:24 14.4 19.70 -0.060.01 -0.120.02 0.13 325 0.000 0.000 1.000 0.000 C -
0246 136341 (2004 CO23) 2458167.40537 1:20 15.7 20.31 0.120.03 0.120.04 0.20 81 0.988 0.003 0.000 0.009 S -
0247 136412 (2005 BG25) 2457724.38316 1:08 16.0 19.50 0.150.05 0.100.05 0.36 69 0.979 0.011 0.001 0.010 S -
0248 136729 (1995 UR57) 2457692.38892 1:20 15.9 19.42 0.050.02 0.120.03 0.05 80 0.707 0.143 0.001 0.150 S -
0249 13707 (1998 QS9) 2458168.40251 3:22 13.2 17.90 0.080.02 0.110.03 0.190.04 196134 0.965 0.016 0.000 0.020 S -
0250 137246 (1999 RN63) 2457722.38400 1:47 17.0 20.02 -0.010.04 -0.060.05 0.18 107 0.029 0.098 0.873 0.000 C -
0251 137277 (1999 RT164) 2458165.41480 5:00 16.0 19.67 0.090.01 -0.090.02 0.17 301 0.044 0.000 0.956 0.000 C -
0252 137286 (1999 RR186) 2458164.41350 4:21 16.7 20.21 0.050.02 0.040.03 0.22 261 0.836 0.091 0.073 0.000 S -
0253 137380 (1999 TO144) 2457692.39719 1:08 16.4 18.98 0.040.02 0.070.03 0.07 68 0.693 0.274 0.025 0.009 S -
0254 137589 (1999 VR149) 2458054.26480 5:20 16.6 19.17 -0.060.07 0.010.03 0.18 321 0.072 0.627 0.301 0.000 X -
0255 137873 (2000 AC91) 2458048.25593 5:28 16.5 19.34 0.100.04 0.180.01 0.12 329 0.755 0.000 0.000 0.245 S -
0256 138732 (2000 SG191) 2457724.28943 1:08 15.3 20.37 -0.010.08 0.000.11 0.60 68 0.188 0.288 0.454 0.070 - -
0257 138777 (2000 SX330) 2458050.25465 5:29 15.3 19.32 -0.050.01 -0.080.02 0.490.04 619122 0.000 0.001 0.999 0.000 C -
0258 138812 (2000 TY54) 2458163.46671 3:33 16.1 20.64 -0.070.04 -0.090.05 0.26 214 0.001 0.083 0.916 0.000 C -
0259 138848 (2000 WD1) 2457724.28943 1:08 17.1 20.44 0.150.06 0.050.10 0.36 68 0.874 0.011 0.098 0.018 S -
0260 138949 (2001 BS58) 2458050.25465 2:33 16.4 19.57 0.050.02 0.010.03 0.33 153 0.671 0.043 0.286 0.000 S -
0261 13911 (1979 QT1) 2457724.38316 1:08 14.6 18.68 0.050.02 0.100.03 0.14 69 0.767 0.157 0.003 0.074 S -
0262 139310 (2001 KQ22) 2458048.25593 5:28 16.1 19.77 0.060.04 0.020.02 0.22 329 0.818 0.060 0.122 0.000 S -
0263 139331 (2001 KW44) 2458047.25601 5:24 15.7 20.52 0.110.03 0.150.03 0.550.09 649116 0.988 0.000 0.000 0.012 S -
0264 139494 (2001 PE31) 2457800.44661 0:54 16.1 20.18 0.050.16 0.320.16 0.51 54 0.481 0.073 0.017 0.429 - -
0265 139791 (2001 RR6) 2457692.38892 1:20 15.1 19.20 0.040.02 0.020.03 0.06 80 0.582 0.119 0.299 0.000 S -
0266 139821 (2001 RM28) 2458163.46671 3:42 16.3 20.77 -0.080.05 -0.090.07 0.95 223 0.001 0.120 0.879 0.000 C -
0267 139826 (2001 RJ32) 2457798.46669 0:53 15.3 18.56 -0.060.06 -0.060.07 0.11 53 0.018 0.239 0.740 0.003 C -
0268 139858 (2001 RW61) 2457690.33738 1:05 15.6 20.58 0.110.07 0.110.08 0.37 66 0.794 0.071 0.028 0.107 S -
0269 139987 (2001 SJ32) 2457724.34904 0:46 15.7 19.50 0.060.08 0.120.10 0.16 47 0.510 0.173 0.090 0.227 S -
0270 140028 (2001 SZ61) 2458053.25946 4:21 15.1 19.56 0.090.05 0.190.04 0.450.08 18727 0.667 0.009 0.000 0.323 S -
0271 140391 (2001 TQ55) 2457724.28943 1:08 15.1 19.62 -0.130.04 -0.120.07 0.19 68 0.000 0.051 0.949 0.000 C -
0272 14053 (1995 YS25) 2457692.44645 1:00 16.4 19.42 0.130.04 0.290.06 0.05 60 0.842 0.000 0.000 0.158 S -
0273 14070 (1996 JC1) 2458049.25597 5:24 13.1 17.38 0.090.01 0.170.01 0.14 325 0.993 0.000 0.000 0.007 S -
0274 140709 (2001 US82) 2458163.46671 3:42 15.7 19.86 0.090.02 0.080.03 0.16 223 0.991 0.009 0.000 0.000 S -
0275 140785 (2001 UG140) 2458047.25601 5:24 15.0 20.23 0.050.02 0.110.03 0.20 324 0.742 0.191 0.000 0.068 S -
0276 140871 (2001 VH15) 2458053.25946 4:21 15.0 19.60 -0.050.09 0.130.07 0.52 262 0.153 0.501 0.035 0.311 X -
0277 140940 (2001 VR90) 2457687.38022 3:03 14.8 18.19 -0.090.01 -0.050.02 0.13 183 0.000 0.059 0.941 0.000 C -
0278 140958 (2001 VT103) 2457724.28943 1:08 14.9 19.79 -0.010.04 -0.070.06 0.24 68 0.036 0.114 0.850 0.000 C -
0279 140990 (2001 WP19) 2458167.40537 1:20 15.7 20.70 0.020.05 0.080.06 0.18 81 0.395 0.374 0.114 0.117 - -
0280 141174 (2001 XS151) 2457690.33738 1:57 15.4 19.41 0.050.03 0.080.04 0.23 118 0.706 0.248 0.015 0.030 S -
0281 141237 (2001 XE251) 2457690.33738 1:57 15.5 18.92 -0.040.02 -0.020.02 0.12 118 0.000 0.402 0.598 0.000 C -
0282 141312 (2001 YU121) 2457692.44645 1:00 14.7 18.97 0.010.04 0.070.05 0.11 60 0.294 0.509 0.109 0.088 X -
0283 141371 (2002 AJ49) 2458055.26304 5:14 15.6 19.72 -0.050.02 -0.070.03 0.24 315 0.000 0.040 0.960 0.000 C -
0284 14154 Negrelli (1998 SZ106) 2457692.38892 1:20 14.4 17.92 0.080.02 0.150.03 0.15 80 0.906 0.001 0.000 0.092 S -
0285 141588 (2002 HY2) 2458164.41350 4:21 16.9 19.58 0.080.02 0.080.02 0.10 261 0.988 0.012 0.000 0.000 S -
0286 142018 (2002 PK173) 2458054.26480 5:20 17.0 20.25 0.090.05 0.070.05 0.23 321 0.857 0.095 0.026 0.022 S -
0287 142022 (2002 QE1) 2458163.46671 3:42 17.0 20.20 -0.010.02 0.010.04 0.16 223 0.076 0.416 0.507 0.001 C -
0288 142476 (2002 TW17) 2458049.25597 5:24 16.2 19.67 -0.020.01 0.020.02 0.150.05 19723 0.005 0.730 0.264 0.000 X -
0289 142547 (2002 TT52) 2457691.37970 1:54 16.2 18.14 0.120.02 0.140.03 0.15 114 0.999 0.000 0.000 0.001 S -
0290 142640 (2002 TK187) 2458164.41350 4:21 15.5 19.67 -0.010.02 0.030.02 0.710.04 29560 0.030 0.753 0.216 0.000 X -
0291 143105 (2002 XS21) 2457802.40209 0:32 14.9 19.24 0.080.04 0.160.05 0.09 33 0.699 0.034 0.001 0.266 S -
0292 14332 (1981 EX26) 2457692.38892 1:20 14.5 17.76 0.050.02 0.070.03 0.04 80 0.756 0.231 0.011 0.002 S -
0293 144099 (2004 BO61) 2458164.41350 4:21 15.9 20.51 0.060.03 0.090.03 0.670.07 522111 0.821 0.150 0.003 0.026 S -
0294 144164 (2004 BY103) 2458047.25601 5:24 15.7 20.00 0.080.02 0.010.02 0.15 324 0.958 0.000 0.042 0.000 S -
0295 144524 (2004 ER79) 2457801.38674 1:43 15.4 19.03 0.140.05 0.160.06 0.13 104 0.935 0.005 0.001 0.059 S -
0296 144613 (2004 FJ58) 2458051.26860 4:53 15.5 20.45 -0.070.03 -0.110.03 0.29 293 0.000 0.001 0.999 0.000 C -
0297 144743 (2004 GD61) 2457690.33738 1:26 15.3 19.97 -0.050.04 -0.000.05 0.23 87 0.009 0.544 0.446 0.001 X -
0298 144854 (2004 KA10) 2457798.41862 1:06 15.1 19.16 0.090.07 0.200.09 0.24 67 0.597 0.051 0.004 0.348 S -
0299 145886 (1999 TY98) 2457690.42183 2:21 16.2 19.25 0.030.04 -0.000.04 0.19 142 0.373 0.143 0.484 0.001 - -
0300 145931 (1999 XO5) 2457692.44645 1:00 16.7 18.95 0.070.04 0.060.05 0.08 60 0.754 0.128 0.089 0.029 S -
0301 145971 (2000 AG38) 2457724.34310 0:55 16.3 20.11 0.140.08 0.170.13 0.30 55 0.819 0.026 0.036 0.119 S -
0302 146076 (2000 GR158) 2458164.41350 4:21 16.6 19.49 -0.030.01 -0.090.02 0.15 261 0.000 0.000 1.000 0.000 C -
0303 146719 (2001 WQ83) 2457724.39853 0:46 15.7 20.04 0.030.07 0.100.09 0.31 47 0.416 0.259 0.109 0.216 - -
0304 146925 (2002 CM265) 2457724.38316 1:08 14.3 19.57 0.050.03 0.110.04 0.14 69 0.635 0.190 0.007 0.167 S -
0305 147057 (2002 RY106) 2458167.40537 1:20 15.4 20.58 0.110.04 0.010.11 0.630.06 16127 0.701 0.013 0.262 0.024 S -
0306 147347 (2003 BL71) 2458048.25593 5:28 15.9 20.42 0.050.05 0.130.03 0.310.06 497118 0.600 0.184 0.000 0.215 S -
0307 147397 Bobhazel (2003 FO7) 2458165.40164 5:19 15.8 19.91 0.110.02 0.160.02 0.22 320 0.995 0.000 0.000 0.005 S -
0308 147458 (2004 BY42) 2457730.42038 1:30 16.8 19.46 0.070.04 -0.020.04 0.30 90 0.546 0.015 0.439 0.000 S -
0309 148085 (1999 CW46) 2458048.25593 5:28 16.1 20.96 -0.000.06 0.080.04 0.33 329 0.276 0.630 0.049 0.045 X -
0310 148429 (2000 WM165) 2457730.42038 1:30 15.3 19.32 0.100.04 0.180.04 0.17 90 0.833 0.003 0.000 0.164 S -
0311 149183 (2002 JV75) 2457722.38400 1:47 15.3 20.08 0.010.04 0.150.05 0.17 107 0.193 0.330 0.004 0.473 - -
0312 149649 (2004 FR43) 2457724.34310 0:55 16.3 19.91 0.210.07 0.130.13 0.49 55 0.961 0.002 0.021 0.016 S -
0313 149729 (2004 KA4) 2457724.39556 0:50 14.9 19.48 0.080.04 0.060.05 0.36 51 0.861 0.074 0.057 0.009 S -
0314 150008 (2005 UD216) 2457724.38316 1:08 15.2 19.43 0.060.03 0.080.04 0.20 69 0.754 0.188 0.017 0.041 S -
0315 150198 (1998 RE25) 2458166.40297 2:45 14.9 20.89 0.100.07 0.090.10 0.830.11 33156 0.705 0.081 0.108 0.106 S -
0316 150223 (1998 TT22) 2458166.40297 2:45 16.4 20.27 -0.080.04 -0.070.05 0.30 165 0.000 0.135 0.865 0.000 C -
0317 150274 (1999 SS) 2458167.40537 1:20 15.1 20.19 -0.030.03 0.030.04 0.13 81 0.028 0.739 0.232 0.001 X -
0318 150922 (2001 TK61) 2458047.25601 5:24 15.8 19.35 -0.070.01 -0.080.02 0.28 324 0.000 0.004 0.996 0.000 C -
0319 151063 (2001 VH29) 2458053.25946 4:14 15.8 18.98 0.110.03 0.160.03 0.14 255 0.969 0.000 0.000 0.031 S -
0320 152387 (2005 UD226) 2458164.41350 4:21 15.9 21.07 0.120.05 0.160.05 0.26 261 0.906 0.008 0.000 0.085 S -
0321 152588 (1995 EY4) 2458053.26918 4:07 16.4 19.96 -0.090.13 -0.110.13 0.690.14 22450 0.068 0.146 0.773 0.014 C -
0322 152673 (1998 HU14) 2458050.25465 5:29 15.7 19.76 -0.080.02 -0.120.02 0.420.05 33467 0.000 0.000 1.000 0.000 C -
0323 152809 (1999 TU197) 2457801.38966 1:39 14.4 19.73 0.180.09 0.310.08 0.52 99 0.901 0.000 0.000 0.099 S -
0324 153281 (2001 DF56) 2458163.46671 3:42 14.6 19.36 0.030.02 0.080.03 0.21 223 0.431 0.551 0.011 0.008 X -
0325 153663 (2001 TL152) 2458050.25465 5:29 16.7 19.64 0.050.04 0.100.03 0.21 329 0.642 0.321 0.002 0.035 S -
0326 153720 (2001 UL105) 2458049.25597 5:24 16.3 20.36 0.020.04 0.010.03 0.470.07 650121 0.358 0.212 0.430 0.000 - -
0327 153860 (2001 XE65) 2458049.40145 1:55 15.7 18.64 0.060.02 0.080.02 0.06 115 0.879 0.119 0.000 0.001 S -
0328 154709 (2004 KR) 2457802.39604 0:41 16.4 19.48 0.060.04 0.030.04 0.14 41 0.703 0.117 0.174 0.005 S -
0329 154973 (2004 TC344) 2457730.42354 1:25 14.9 19.71 -0.000.06 -0.040.08 0.19 86 0.120 0.224 0.645 0.011 C -
0330 15525 (1999 XH176) 2458166.40297 2:54 13.3 17.56 0.080.01 0.120.02 0.12 175 0.984 0.004 0.000 0.012 S -
0331 15542 (2000 DN3) 2457691.37970 1:54 13.8 17.91 0.060.02 0.100.02 0.200.04 22443 0.854 0.140 0.000 0.007 S -
0332 155645 (2000 GM52) 2457691.37970 1:54 16.7 20.25 0.070.05 0.150.06 0.40 114 0.610 0.086 0.002 0.302 S -
0333 155749 (2000 SR97) 2457724.38316 1:08 15.9 19.99 0.170.04 0.120.05 0.20 69 0.996 0.001 0.000 0.003 S -
0334 155870 (2001 DL27) 2457802.50174 0:55 15.0 20.08 -0.030.07 -0.050.15 0.24 55 0.078 0.235 0.612 0.075 C -
0335 156018 (2001 RM94) 2458167.40537 1:08 16.3 20.53 0.080.05 0.080.07 0.86 68 0.788 0.087 0.057 0.069 S -
0336 15603 (2000 GG108) 2457722.38400 1:47 14.3 18.53 -0.050.02 -0.040.03 0.04 107 0.000 0.260 0.740 0.000 C -
0337 156286 (2001 WV13) 2458048.37108 2:43 16.1 18.86 0.080.01 0.110.02 0.22 163 0.994 0.004 0.000 0.002 S -
0338 156380 (2001 YL70) 2458055.26304 5:14 15.6 18.65 0.070.01 0.080.01 0.14 315 0.991 0.009 0.000 0.000 S -
0339 156750 (2002 XW90) 2457690.42183 2:21 16.3 18.94 0.120.04 0.080.05 0.37 142 0.984 0.007 0.004 0.005 S -
0340 156898 (2003 EX29) 2458164.41350 4:14 17.8 19.95 0.040.02 0.020.02 0.27 255 0.666 0.090 0.244 0.000 S -
0341 157027 (2003 QQ95) 2458167.40537 1:20 14.7 19.60 -0.100.03 -0.160.04 0.12 81 0.000 0.000 1.000 0.000 C -
0342 157119 (2004 NF2) 2458163.46671 3:42 16.8 20.89 0.060.08 0.040.08 0.41 223 0.527 0.207 0.212 0.054 S -
0343 15720 (1990 EN1) 2457724.38316 1:08 13.6 18.31 -0.000.02 0.000.03 0.05 69 0.057 0.283 0.660 0.000 C -
0344 157426 (2004 TF333) 2457692.38892 1:20 16.3 19.51 0.020.03 0.020.04 0.19 80 0.375 0.218 0.406 0.000 - -
0345 157668 (2005 YY72) 2458164.41350 4:21 15.2 19.48 -0.100.02 -0.140.02 0.320.05 25244 0.000 0.000 1.000 0.000 C -
0346 157804 (1995 SF87) 2458053.25946 4:21 16.2 19.70 0.050.08 0.020.07 0.40 262 0.507 0.197 0.281 0.015 S -
0347 157838 (1998 FG139) 2458054.26480 5:20 15.9 20.32 0.080.09 0.060.08 0.38 321 0.633 0.179 0.137 0.051 S -
0348 158219 (2001 SZ136) 2458054.26480 5:20 16.1 19.22 0.090.02 0.120.03 0.14 321 0.989 0.001 0.000 0.009 S -
0349 158468 (2002 CH247) 2458053.25946 4:21 15.6 20.12 0.070.10 0.000.09 0.46 262 0.508 0.143 0.325 0.024 S -
0350 159014 (2004 TK24) 2458166.40297 2:45 16.0 20.29 -0.040.06 0.150.04 0.27 165 0.093 0.481 0.000 0.425 - -
0351 159046 (2004 TZ117) 2458049.25597 5:24 15.9 18.94 0.070.01 0.090.01 0.17 325 0.982 0.018 0.000 0.000 S -
0352 159412 (1999 RZ133) 2458168.40251 1:33 15.5 19.89 0.100.04 0.130.06 0.15 94 0.883 0.024 0.002 0.092 S -
0353 160054 (1999 TZ290) 2458164.41350 4:21 15.9 21.12 0.040.05 0.050.05 0.31 261 0.550 0.281 0.141 0.027 S -
0354 160513 (1990 TD13) 2457690.42183 2:21 16.0 18.75 0.110.03 0.120.03 0.17 142 0.976 0.006 0.000 0.018 S -
0355 161237 (2003 AT36) 2457692.44645 1:00 17.5 19.52 0.030.04 0.030.05 0.13 60 0.391 0.314 0.279 0.017 - -
0356 161284 (2003 GL43) 2458049.25597 5:24 16.3 19.01 0.100.01 0.130.02 1.220.04 34361 1.000 0.000 0.000 0.000 S -
0357 161353 (2003 SV142) 2458163.46671 3:42 15.8 20.26 0.070.03 0.100.04 0.22 223 0.820 0.104 0.003 0.073 S -
0358 161360 (2003 SR165) 2457690.42183 2:19 15.8 19.14 -0.000.03 0.010.05 0.30 139 0.131 0.392 0.476 0.001 - -
0359 16159 (2000 AK62) 2457796.48277 0:51 13.0 17.58 0.070.07 0.020.07 0.13 52 0.585 0.137 0.264 0.015 S -
0360 161977 (2007 LE3) 2458167.40537 1:20 15.3 20.37 0.040.04 0.020.05 0.13 81 0.454 0.180 0.359 0.007 - -
0361 162031 (1995 VE14) 2458164.41350 4:21 16.6 20.60 0.060.03 0.110.03 0.23 261 0.799 0.139 0.001 0.061 S -
0362 162130 (1998 SP104) 2458163.46671 3:42 15.8 20.69 0.080.04 0.090.05 0.37 223 0.847 0.091 0.017 0.045 S -
0363 16220 Mikewagner (2000 DB40) 2457692.44645 1:00 14.5 18.10 0.060.04 0.080.05 0.13 60 0.702 0.192 0.053 0.054 S -
0364 163005 (2001 SX265) 2458055.26304 5:08 16.8 20.03 0.050.05 0.100.04 0.19 308 0.587 0.306 0.007 0.100 S -
0365 16354 (1975 SN1) 2457724.34161 0:57 13.9 18.55 0.040.03 0.100.05 0.15 58 0.518 0.313 0.027 0.142 S -
0366 164030 (2003 UJ245) 2457724.38316 1:08 16.2 19.61 0.040.03 0.080.04 0.10 69 0.597 0.327 0.037 0.039 S -
0367 164102 (2003 WY175) 2458049.25597 5:24 15.7 19.66 0.060.01 0.070.02 0.150.04 15513 0.913 0.087 0.000 0.000 S -
0368 164177 (2004 BM46) 2457724.34608 0:51 15.6 20.17 0.280.12 0.200.17 0.29 51 0.953 0.004 0.016 0.026 S -
0369 164181 (2004 BJ52) 2458164.41350 4:21 15.9 19.90 0.080.02 0.130.02 0.16 261 0.960 0.005 0.000 0.035 S -
0370 164745 (1998 TU8) 2457692.44645 1:00 16.3 19.63 0.010.05 0.050.06 0.14 60 0.329 0.410 0.221 0.040 - -
0371 164745 (1998 TU8) 2458163.46671 3:42 16.3 20.46 0.080.03 0.020.04 0.31 223 0.850 0.027 0.123 0.001 S -
0372 165528 (2001 CK28) 2458163.46671 3:42 16.4 19.60 -0.070.12 -0.030.08 0.31 223 0.120 0.247 0.625 0.008 C -
0373 16561 Rawls (1991 VP7) 2457724.28943 1:08 13.7 18.53 -0.060.02 -0.060.03 0.08 68 0.000 0.135 0.865 0.000 C -
0374 165986 (2001 YZ116) 2458053.25946 4:21 16.6 19.93 0.090.09 0.060.10 0.72 262 0.642 0.120 0.155 0.083 S -
0375 166021 (2002 AN163) 2458047.25601 5:24 16.6 19.78 0.090.02 0.060.02 0.930.06 36772 0.997 0.003 0.000 0.000 S -
0376 166177 (2002 EA64) 2458165.40164 5:19 16.6 20.14 0.040.02 0.060.02 0.23 320 0.637 0.341 0.021 0.000 S -
0377 166225 (2002 FP9) 2458168.40251 3:22 16.2 18.77 0.000.02 -0.020.03 0.100.05 200102 0.062 0.163 0.775 0.000 C -
0378 166266 (2002 GO84) 2458049.26469 5:12 16.0 20.10 0.080.02 0.140.02 1.150.07 437101 0.943 0.004 0.000 0.053 S -
0379 16638 (1993 QN3) 2458164.41350 4:21 13.9 18.16 -0.030.01 -0.050.01 0.22 261 0.000 0.022 0.978 0.000 C -
0380 166631 (2002 SB26) 2457690.33738 1:57 15.2 18.70 0.040.02 0.130.02 0.14 118 0.612 0.114 0.000 0.274 S -
0381 166648 (2002 TQ7) 2457690.33738 1:55 15.4 20.00 0.060.04 0.040.05 0.22 116 0.775 0.103 0.114 0.009 S -
0382 166840 (2002 VT122) 2458051.26003 5:15 15.3 19.77 -0.060.02 -0.080.02 0.190.06 20729 0.000 0.003 0.997 0.000 C -
0383 167162 (2003 SW246) 2458167.40537 1:17 16.3 20.75 0.060.04 0.100.05 0.22 77 0.721 0.156 0.026 0.097 S -
0384 167222 (2003 UT39) 2457692.44645 1:00 16.1 19.13 0.040.04 0.170.05 0.19 60 0.383 0.094 0.001 0.522 D -
0385 167399 (2003 WX101) 2457692.44645 1:00 16.0 19.66 0.050.05 0.170.06 0.08 60 0.428 0.101 0.003 0.468 - -
0386 167860 (2005 EG18) 2457692.45553 0:46 16.7 19.45 0.080.05 0.190.06 0.10 47 0.601 0.030 0.001 0.368 S -
0387 167898 (2005 EP78) 2458048.25593 5:28 15.2 19.76 -0.060.04 -0.070.02 0.260.05 22327 0.000 0.007 0.993 0.000 C -
0388 168098 (2006 DO199) 2458054.26480 5:07 16.9 20.24 -0.010.08 -0.160.07 0.34 308 0.027 0.011 0.962 0.000 C -
0389 168232 (2006 KO41) 2458168.40251 3:15 15.8 19.39 0.050.03 0.040.04 0.240.06 24358 0.717 0.150 0.127 0.005 S -
0390 16829 (1997 WG7) 2458168.40251 3:18 15.2 17.88 -0.050.02 -0.070.03 0.080.04 12132 0.000 0.065 0.935 0.000 C -
0391 168411 (1998 HO113) 2457691.46127 2:00 15.2 20.54 0.010.07 -0.020.10 0.42 121 0.208 0.215 0.538 0.039 C -
0392 168699 (2000 GO144) 2457692.44645