A photometric study of Be stars located in the seismology fields of COROTSection 5, including Figs. 4-27 and Tables 5-6, are only available in electronic form at http://www.aanda.org

A photometric study of Be stars located in the seismology fields of COROTthanks: Section 5, including Figs. 4-27 and Tables 5-6, are only available in electronic form at http://www.aanda.org

J. Gutiérrez-Soto Observatorio Astronómico. Universidad de Valencia. Edicifio Institutos de Investigación. Polígono la Coma. 46980 Paterna, Valencia, Spain GEPI, Observatoire de Paris, CNRS, Université Paris Diderot; place Jules Janssen 92195 Meudon Cedex, France    J. Fabregat Observatorio Astronómico. Universidad de Valencia. Edicifio Institutos de Investigación. Polígono la Coma. 46980 Paterna, Valencia, Spain GEPI, Observatoire de Paris, CNRS, Université Paris Diderot; place Jules Janssen 92195 Meudon Cedex, France    J. Suso GACE-ICMUV Edicifio Institutos de Investigación. Polígono la Coma. 46980 Paterna, Valencia, Spain    M. Lanzara GACE-ICMUV Edicifio Institutos de Investigación. Polígono la Coma. 46980 Paterna, Valencia, Spain    R. Garrido Instituto de Astrofísica de Andalucía (CSIC). Camino Bajo de Huétor, 24. 18008, Granada, Spain    A-M. Hubert and M. Floquet GEPI, Observatoire de Paris, CNRS, Université Paris Diderot; place Jules Janssen 92195 Meudon Cedex, France GEPI, Observatoire de Paris, CNRS, Université Paris Diderot; place Jules Janssen 92195 Meudon Cedex, France
Received ; accepted
Key Words.:
Stars: emission-line, Be - Stars: oscillations (including pulsations) - Stars: statistics - Techniques: photometric
offprints: juan.gutierrez-soto@uv.es
Abstract

Context:In preparation for the COROT mission, an exhaustive photometric study of Be stars located in the seismology fields of the COROT mission has been performed. The very precise and long-time-spanned photometric observations gathered by the COROT satellite will give important clues of the origin of the Be phenomenon.

Aims:The aim of this work is to find short-period variable Be stars located in the seismology fields of COROT and to study and characterise their pulsational properties.

Methods:Light curves obtained at the Observatorio de Sierra Nevada together with data from Hipparcos and ASAS-3 of a total of 84 Be stars have been analysed in order to search for short-term variations. We have applied standard Fourier techniques and non-linear least-square fitting to the time series.

Results:We have found 7 multiperiodic, 21 mono-periodic and 26 non-variable Be stars. Short-term variability has been detected in 74% of early-type Be stars and in 31% of mid- to late-type Be stars. We have shown that non-radial pulsations are most frequent among Be stars than in slow-rotating B stars of the same spectral range.

Conclusions:

1 Introduction

Be stars are non-supergiant B stars, that show or have shown at one or another moment emission in Balmer lines. It is generally agreed that the origin of this emission is the presence of an equatorial circumstellar disk, fed by discrete mass loss events. For a complete review of the “Be phenomenon” and its properties, see Porter & Rivinius (2003).

Be stars show two different types of photometric variability, with different origin and time-scales: (i) Long-term variability due to variations in the size and density of the circumstellar envelope. Variations are irregular and sometimes quasi-periodic, with time-scales of weeks to years. In some stars, variations are in form of outbursts with total duration of weeks or months. (ii) Short-term periodic variability, with time-scales from 0.1 to 2 days, generally attributed to non-radial pulsations. Hubert & Floquet (1998), based on Hipparcos observations, found that it is present in 86% of early Be stars, in 40% of intermediate sub-spectral types (B4e-B5e) and in only 18% of late Be stars. In the HR diagram, early Be stars are located at the lower border of the instability domain of the Cephei stars, while mid and late Be stars are mixed with SPB stars. Both Cephei and SPB stars are main sequence pulsating B stars. Pulsations in Cephei stars are caused by p-modes driven by the mechanism associated with the Fe bump, and have periods similar to the fundamental radial mode. Slowly Pulsating B stars (SPB) are g-mode pulsators with periods longer than the fundamental radial one. Therefore, short-period p-modes are expected in early Be stars and long-period g-modes in mid to late Be stars.

Recently, the high-precision photometric data obtained with the MOST satellite has revealed a rich spectrum of frequencies associated with radial and non-radial pulsations in three Be stars, namely Oph (O9.5Ve, Walker et al. 2005b), HD 163868 (B5Ve, Walker et al. 2005a) and $β$ CMi (B8Ve, Saio et al. 2007). This discovery suggests that pulsations are present in all rapidly rotating Be stars.

The characterisation of the short-term variability in Be stars is essential for the understanding of the Be phenomenon. The spectroscopic analysis led by Rivinius et al. (2001) in Cen suggested that non-radial pulsations combined to the near break-up rotational velocity are probably the mechanism that cause the mass ejection. However, Cen is, up to now, the only known Be star which presents this behaviour. The observation of Be stars with the COROT satellite will provide photometric time series with such an unprecedented quality that will allow us to perform a deep study in the role of non-radial pulsations and its relation with the Be star outbursts.

The French led COROT satellite111http://corot.oamp.fr/ was successfully launched on 27 December 2006 and started its scientific observations on 3 February 2007. COROT has two main goals: the study of the stellar interiors by looking at their oscillations and the search for exoplanets by detecting planetary transits (see Baglin et al. 2002). In each pointing, up to 10 stars with magnitudes between 5.5 and 9.4 will be monitored in the two CCDs of the seismology program during 150 or 20 days with a photometric precision of ppm. The COROT telescope will be pointed alternatively in the direction of two regions in the sky placed at the intersection between the equator and the galactic plane. Both regions have a radius of 10 degrees and are denoted as the centre and anticentre cones respectively, regarding their positions relative to the galactic center.

Bright Be stars will be therefore observed as secondary targets of the asteroseismology program. An international collaboration (The COROT Be stars team222http://www.ster.kuleuven.ac.be/coralie/corotbe.html) led by A.-M. Hubert has studied the bright Be stars candidates to be observed by COROT. In this framework, Neiner et al. (2005) identified 16 previously unknown Be stars in the COROT observing cones, Frémat et al. (2006) determined the fundamental parameters of 64 Be stars in the regions and Gutiérrez-Soto et al. (2007) found two of them as multiperiodic and characterised their pulsational behaviour.

The aim of this work is to characterise the short-term photometric variability of all bright Be stars located in the COROT cones, which are suitable to be observed in the seismology fields. In addition, we have investigated the pulsational properties of Be stars and their degree of variability with respect to other pulsating B stars.

2 Observations and data analysis

2.1 The sample

A total of 84 Be stars have been found in the observing cones of COROT with magnitudes ranging from 5.5 to 9.4. The list has been taken from Jaschek & Egret (1982), complemented with the new Be stars identified by Neiner et al. (2005).

Due to the high number of stars to be analysed, a selection criterion has been made. As a first step, all the stars close to the primary targets of COROT have been observed during a 4-year campaign at the Observatorio de Sierra Nevada (OSN). They were firstly selected as they have the highest probability to be observed by the satellite. As the decision of the exact position of the CCDs has been finally taken by the scientific committee of COROT in 2006, we observed some Be stars which are not located near the finally selected primary targets. Be stars whose results did not lead to a convincing period determination during the observing run were re-observed at the OSN and re-analysed. In addition, the Hipparcos and ASAS-3 light curves of all Be stars in the COROT cones have been analysed in order to complement the study performed with the OSN data.

The studied stars with their spectral types and  are reported in Tables 5 and 6 (available only in electronic form at http://www.aanda.org).

2.2 Observatorio de Sierra Nevada (OSN)

Ground-based observations were obtained at the 0.9 m telescope of the Observatorio de Sierra Nevada in Granada, Spain, from 2002 to 2006. The instrument used is the automatic four-channel spectrophotometer which allows simultaneous observations through the four filters of the Strömgren system. Obtaining photometric light curves in four filters at the same time allows us to confirm or reject uncertain periods. Only frequencies detected simultaneously in the filters are considered as certain, as the signal to noise for the filter is significantly lower.

Dates Observing Accuracy (mmag)
nights u v b y
20-29 May 2002 10 10 6 6 7
8-14 Jan 2003 4 9 4 3 4
1-13 Jul 2003 9 8 4 4 6
30 Jan - 8 Feb 2004 4 10 5 5 6
13 - 24 Jul 2005 6 10 5 5 5
16 - 30 Jan 2006 5 7 4 4 5
Table 1: Summary of observing nights at the OSN. The mean accuracy of each dataset is also provide (see text for details).

Dates of the observing runs and observing nights are reported in Table 1. We have applied the three-star differential photometry, similar to the one described by Lampens et al. (2005). A variable, a comparison, a check star and the appropriate sky background were measured successively (sky - var - comp - check - sky - var …). Usually we observed up to 8 target stars every night and we repeated the measurements for each night. Only in the winter 2003 we devoted each clear night to survey an individual star.

Sky level and mean extinction coefficients have been obtained for each night. An amount of 22 Be stars have been observed at the OSN in the anticentre and the centre directions. These Be stars with the corresponding comparison and check stars are presented in Tables 5 and 6 respectively. A few comparison stars have been found to be low-amplitude variables, as for example, HD 171 305 and HD 182 786 (Gutiérrez-Soto et al. in preparation)

The mean accuracy of the differential photometry, measured as the standard deviation of the difference between the comparison and check values for the whole campaign, is, in all cases, less than 10 mmag in and 7 mmag in , as shown in Table 1.

2.3 Hipparcos

Hipparcos (High Precision Parallax COllecting Satellite, Perryman et al. 1997) was an astrometric mission of the European Space Agency dedicated to the measurement of positions, parallaxes and proper motions of stars. As a by-product of the astrometric mission, stellar magnitudes were repeatedly measured for each star on numerous occasions throughout the mission, resulting in an enormous collection of light curves. Hubert & Floquet (1998) showed that Hipparcos is a useful tool for the study of variability of bright Be stars. A total of 62 stars located in the observing cones of COROT were observed by Hipparcos. An average of 100 datapoints spanning 1000 - 1100 days are provided for each observed star. The standard error of a measurement ranges from 6 mmag for stars with magnitude 6 to about 17 mmag for stars with magnitude 9.

2.4 Asas-3

The All Sky Automated Survey (ASAS, Pojmanski 2002) is a project whose final goal is photometric monitoring of approximately stars brighter than 14 magnitude. ASAS-3 is the third stage of the ASAS project, which has surveyed the whole of the southern and part of the northern sky. We have analysed the light curve of 50 Be stars fainter than 7.8 located in the observing cones of COROT. Stars brighter than 7.8 have not been considered as they most likely saturate the detector. An average of 200 datapoints spanning over 1700 days are provided for each star. Since five different magnitudes depending on the aperture radius are provided, we have selected the one which produces less error, usually the 4th and 5th aperture in our case. Only measurements with quality grade A have been analysed. Errors of the ASAS-3 photometry range from 10 to 25 mmag for the studied stars.

2.5 Frequency analysis

Figure 1: Examples of spectral window for the three instruments used in this paper.

Frequency analysis has been applied to the time series of each star in the three datasets separately. In some cases we have been able to combine OSN and ASAS datasets in order to refine the detected frequencies.

We have employed the Period04 program (Lenz & Breger 2005), which searches for frequencies by means of standard Fourier analysis. Once a frequency is detected, the program adjusts the parameters of a sinusoidal function using a least-square fitting and prewhitens the signal from this frequency. Then, a new step starts finding a new frequency, and the subsequent least-square fitting is performed allowing the two frequencies to move in order to get the minimum variance. The method is iterative and stops when the removal of a new frequency is not statistically significant.

We have also used a non-linear multi-parameter fitting code which scans a wide range in frequency based on Vaníček (1971) and explained in detail in Zerbi et al. (1997). This code is well-suited for the OSN and ASAS-3 data, for which daily aliases are present in the periodogram, due to the fact that the observations have been obtained at only one site. We have to note here that the final frequency solution for the OSN and ASAS-3 data can be contaminated from 1  aliases.

In Fig. 1 we show an example of spectral window for the Hipparcos, OSN and ASAS data. The non-random distribution in time of the Hipparcos photometry produces a spectral window which is very complex. In the case of the OSN and ASAS-3 observations, a 1-day alias pattern is present in the spectral window. Note the different widths of the sidelobes, depending on the time length of the observations.

We accept frequencies as long as they fulfill the signal-to-noise ratio (SNR) criterion, described in Breger et al. (1993). Kuschnig et al. (1997) demonstrated that a level in the amplitude spectrum of 4 times the noise level will include the 99.9% of all peaks due to noise. The noise level is computed by averaging the amplitude within a 5  frequency interval of the residual periodogram after final prewhitening.

For the determination of the error in frequencies, we follow equations given by Montgomery & O’Donoghue (1999), taking into account the correlations in the residuals of the fitting (Schwarzenberg-Czerny 1991). We have obtained an error in frequency of , and for the Hipparcos, OSN and ASAS-3 datasets respectively. The frequency resolution is given by , where T is the time length of the observations. In our case, we estimate 0.1 , 0.001  and 0.0006  for the OSN, Hipparcos and ASAS-3 observations respectively.

2.6 Results

Results of the data analysis are summarised in Tables 2 and 3, where we present the frequencies found for all stars analysed for short-term variability. In the few cases in which we have obtained different results from different datasets, we considered as more reliable the one from the instrument with higher precision. Therefore, frequencies obtained from the OSN data are considered as the most reliable, followed by those found from the Hipparcos and ASAS-3 datasets.

Mid- and long-term variability is often present in the light curves of Be stars. In some cases, it shows a complex pattern which prevents the study of the short-term variability. In addition, the data for some stars present a bad sampling or too few datapoints in the light curve. For these reasons, we have not been able to perform short-period analysis for some stars in our sample. They are marked with the “-” symbol in Tables 2 and 3.

Stars showing short-term variability with peak to peak amplitude higher than 0.04 magnitudes during several days are considered as variable, even if we have not been able to determine the frequency. For other stars, the analysis performed in this work yields to uncertain frequencies. These stars are marked in Tables 2 and 3 with the symbols “var” and “?” respectively.

Short-term variability analysis has been finally performed on 57 bright Be stars in the COROT cones. 31 have been found to be variable and 26 non-variable at the detection level of the instruments. Multiperiodic variability has been found in seven stars. Notes on the individual stars are presented in Sect. A, only available in the electronic edition of the paper, which includes Tables 5 and 6 and Figs. 4 to 27.

3 Discussion

Be star Hipparcos OSN ASAS-3 Remarks
HD 42259 var 1.28 1.3223 + 0.7401
HD 42406 - * no var
HD 43264 - * **
HD 43285 2.203/6.173? no var **
HD 43777 - * no var
HD 43913 - * no var
HD 44783 - * **
HD 45260 var * -
HD 45626 * * -
HD 45901 0.466 * -
HD 45910 - * **
HD 46380 - 1.75 ? -
HD 46484 - 2.45 **
HD 47054 no var * **
HD 47160 - * **
HD 47359 * * -
HD 47761 - * -
HD 48282 - * 0.6819
HD 49330 3.534 2.129 - (1)
HD 49567 0.39 * ** 0.39 (2)
HD 49585 * 1.65 + 1.21 - (1)
HD 49787 - * **
HD 49992 * * var
HD 50083 - * **
HD 50087 - no var no var
HD 50209 1.689/1.47 1.4889 2.4803+1.4749
HD 50424 * * -
HD 50581 no var * **
HD 50696 * 3.22 -
HD 50820 no var * **
HD 50868 - * no var
HD 50891 * 1.88 - (1)
HD 51193 1.639 2.66 1.606
HD 51404 * 2.68 + 5.99 var
HD 51452 * 1.58 ? no var
HD 51506 - * **
HD 53085 - * **
HD 53367 - * **
HD 54464 * * -
HD 55135 - * **
HD 55439 - * -
HD 55606 * * no var
HD 55806 - * no var
HD 57386 - * no var
HD 57539 - * **
HD 259431 - * no var
HD 259440 * * no var
HD 259597 * * no var
HD 293396 * * -
Table 2: Results of the photometric study for stars in the Galactic Anticentre direction. Frequencies in  are shown for the Hipparcos, OSN and ASAS-3 datasets. The ’-’ stands for stars for which a short-period analysis could not be performed. The ’*’ stands for stars that have not been observed with the instrument. The ’**’ stands for stars that are saturated in the ASAS-3 database. The ’var’ stands for stars showing short-term variability but not periodicity. The ’no var’ stands for stars that do not show short-term variations at the detection level of the instrument. The ’?’ stands for frequencies which are uncertain. For details, see text. In the last column some complementary indications and/or frequencies detected by other authors are given: (1) - Star included in the ASAS-3 catalogue of variable stars (Pojmanski 2002); (2) - Neiner et al. (2005); (3) - Hubert & Floquet (1998); (4) - Gutiérrez-Soto et al. (2007); (5) - Lynds (1960); (6) - Percy et al. (2002).
Be star Hipparcos OSN ASAS-3 Remarks
HD 166917 no var * **
HD 168797 2.049 1.20+1.13+3.30+1.41. ** 2.049 (3); 1.20+1.13+3.30+1.41 (4)
HD 170009 no var * *
HD 170714 - 3.79 **
HD 171219 no var no var **
HD 173219 var * **
HD 173292 var * 0.6824
HD 173371 no var * **
HD 173530 * * 1.3703
HD 173637 - 1.86 - (1)
HD 173817 no var 3.51 ? no var
HD 174512 0.82 * no var 0.82 (2)
HD 174513 - 3.34 0.0271 + 5.293
HD 174571 - * -
HD 174705 * * 2.3164
HD 174886 no var * **
HD 175869 no var * **
HD 176159 - * no var
HD 176630 1.59 * ** 1.59 (2)
HD 178479 - * -
HD 179343 - * **
HD 179405 var 1.62+2.78+2.56+1.27 - 1.62+2.78+2.56+1.27 (4)
HD 180126 - * -
HD 181231 no var 0.67? 3.4304?
HD 181308 * * -
HD 181367 * no var no var
HD 181709 no var * no var
HD 181803 - * -
HD 183656 1.534 3.63 ** 1.534 (3);1.1739 (5)
HD 184203 * * -
HD 184279 6.410 ? var ** (1); 1.667 (6)
HD 184767 - * **
HD 194244 no var * **
HD 230579 * * no var
BD-094858 * * -
Table 3: Same as for Table 2, but for stars in the Galactic Centre direction.

In Fig. 2 we show the position in the HR diagram of the stars for which we have performed short-term variability analysis. Only 41 Be stars of this sample have accurate determination of their physical parameters. Values of and T of all stars but one are taken from Frémat et al. (2006), assuming = 0.9, which is the average angular velocity rate of galactic field Be stars (Frémat et al. 2005). For the star HD 48282, the spectral parameters are taken from the paper by Levenhagen & Leister (2004). For comparison, we have also plotted the theoretical boundaries of the Cephei and SPB instability strips from Pamyatnykh (1999).

Figure 2: Location of the studied Be stars in the theoretical HR diagram. Red filled squares correspond to variable stars and green asterisks to non-variable stars. The solid line represents the ZAMS from Schaller et al. (1992) and the dashed lines describe the theoretical Cephei and SPB instability strips computed by Pamyatnykh (1999).

We investigate the degree of short-term variability in our sample of Be stars. We have distinguished between early (B0-B3) and mid- to late-type Be stars (B4-B9). In the case of pulsating B-type stars, the first interval is occupied by Cephei variables and the hottest SPB stars. According to Pamyatnykh (1999), the hot-temperature boundary computed with OPAL opacities takes place at B3 (see Fig. 2), but if OP opacities are used, g-modes are excited even in stars much hotter than B3. Pulsating B stars in the B4-B9 interval are only SPB stars. In addition, this distinction between early- and late-type Be stars has also been considered by other authors (eg. Hubert & Floquet 1998) from phenomenological reasons: pulsations are frequent in the early-type interval and scarce in the late-type one.

We have found that short-term variability is present in 74% of early-type Be stars and 31% of mid- to late-type Be stars (see Fig. 3). The results presented here are similar to those obtained by Hubert & Floquet (1998), from a larger sample of Be stars observed by the space mission Hipparcos.

Figure 3: Distribution of short-term variability as a function of spectral type for stars in our sample.

In order to compare the degree of variability of Be stars with respect to slow-rotating B-type stars, we have searched in the literature for the fraction of Cephei and SPB stars among the total number of B stars in their spectral ranges. To our knowledge, general studies of these fractions have not been undertaken. For this reason, we have studied the fraction of Cephei and SPB stars in a sample of galactic field stars observed by the Hipparcos mission. Our sample consists of all stars in the Bright Star Catalogue (Hoffleit & Jaschek 1991) with spectral type between B0 and B9 and luminosity class V-III, whose Hipparcos parallax has an accuracy better than 20% and with Strömgren photometry in the catalogue of Hauck & Mermilliod (1998). All known Be stars have been excluded from the sample. The whole sample consists of 185 stars in the B0-B3 spectral domain and 610 in the B4-B9 domain. The Hipparcos photometry of all these stars has been searched for short-term variability (Eyer 1998; Waelkens et al. 1998). The results of these surveys together with previous literature are included in the most recent lists of known Cephei (Stankov & Handler 2005) and SPB stars (de Cat 2002).

Among the 185 stars in the early spectral domain, 16 are catalogued as Cephei and 14 as SPB stars, considering both confirmed and candidate SPB stars as listed by de Cat (2002). This amounts to a total of 30 pulsating stars, representing the 16% of the sample. For stars in the B4-B9 range, 21 are listed as confirmed and candidate SPB stars. This represents a fraction of 3.4%. The photometric data and the variability search techniques for this sample are the same as Hubert & Floquet (1998) used for their short-term variability study of Be stars observed by Hipparcos, and hence the results of both searches are directly comparable.

In addition, we have searched in the literature for photometric surveys aimed to detect pulsating B stars in the population of galactic open clusters which are young enough to have their B-star main sequence complete. A cluster population cannot be considered as representative of the galactic field as it is composed by stars in a very narrow range of ages and metallicities. However, by taking into account the mean results for several clusters with different astrophysical parameters, we can consider them representative.

The number of Cephei and SPB stars in clusters have been taken from the studies of Krzesinski & Pigulski (1997) for NGC 884, Krzesiński et al. (1999) for NGC 869, Pigulski et al. (2001) for NGC 663, Balona (1994) for NGC 3293, Balona & Koen (1994) for NGC 4755, Balona & Laney (1995) and Arentoft et al. (2001) for NGC 6231 and Balona & Laney (1996) for NGC 2362. In order to select the B stars in the B0-B3 and B4-B9 spectral ranges, we have used Strömgren photometry from Capilla & Fabregat (2002) for NGC 884 and NGC 869, Fabregat & Capilla (2005) for NGC 663, Balona (1994) for NGC 3293, Balona & Koen (1994) for NGC 4755, Balona & Laney (1995) for NGC 6231 and Balona & Laney (1996) for NGC 2362.

Stars within the two ranges have been selected by using the reddening-free indices [c1] and [m1] and their relationship with spectral types given by Moon (1986). Known Be stars have been removed from the final list.

In Table 4 we show the percentage of Cephei in the studied open clusters. An average percentage of around 13.5% is found for Cep stars. Note that the dispersion is quite high, although it is already known that clusters with similar age have very different proportion of Cephei stars (Balona et al. 1997). The number of SPB stars found in the above clusters is too low to allow any reliable statistics.

The fraction of early-type pulsating B stars is 16% and 13.5% from the galactic field and cluster stars respectively. These values are significantly lower than the percentage of pulsating Be stars with spectral types between B0 and B3, which is 74% from the present work, and 86% from the Hipparcos sample studied by Hubert & Floquet (1998). The fraction of SPB stars in our late-type B stars sample is 3.4%, again significanly lower than the value of 31% found for late-type Be stars in our sample and 26% found by Hubert & Floquet (1998). We can conclude that the fraction of non-radial pulsators among fast-rotating Be stars is much higher than the fraction among slow-rotating B stars of the same spectral type.

One of the most remarkable characteristic of Be stars is the high rotational velocity. In this context, the above results suggest that high-rotational velocity may have the effect to trigger the development of non-radial pulsations in B stars, or to enhance the amplitude of existing modes to make them more easily detectable. Alternatively, the higher prevalence of non-radial pulsations could be related to other ingredient of the yet unknown nature of the Be phenomenon.

A deeper exploration of the physical implications of these results is not possible yet, due to the lack of adequate models describing the stellar pulsations at rotational velocities close to the critical. However, we consider that these results constitute a valuable input for the models being currently developed (e.g. Reese et al. 2006).

Cluster % Cep
NGC 884 12-14%
NGC 869 5-7%
NGC 663 9-12%
NGC 3293 25%
NGC 4755 25-30%
NGC 6231 10-15%
NGC 2362 0%
Table 4: Percentage of Cephei stars among the number of B stars in the same spectral range for different open clusters.

4 Conclusions

We have studied the short-term variability of 57 bright Be stars located in the seismology fields of COROT. We have analysed photometry obtained at the OSN together with data from the Hipparcos mission and ASAS-3 project. 31 stars have been detected as variable and 26 are considered as non-variable at the detection level of the instruments. Moreover, seven variable stars have been found to be multiperiodic.

We have shown that non-radial pulsations are most frequent in Be stars than in slow-rotating B stars of the same spectral range. These results allow us to suggest that high-rotational velocity can either contribute to trigger the development of non-radial pulsations or to enhance the amplitude of the existing modes. As an alternative explanation, the prevalence of non-radial pulsations could be related to the yet unknown nature of the Be phenomenon.

The observations of Be stars with the COROT satellite, currently underway, will give an answer to these issues and serve as input to the elaboration of pulsational models for high-rotating stars which are currently being developed.

Acknowledgements.
We would like to thank Ennio Poretti for allowing us to use his data from San Pedro Martir and Katrien Uytterhoeven for her useful comments. This research is based on data obtained at the Observatorio de Sierra Nevada, which is operated by the CSIC through the Instituto de Astrofísica de Andalucía. J.F. and J.S. acknowledge financial support from the program ESP 2004-03855-C03.

References

  • Arentoft et al. (2001) Arentoft, T., Sterken, C., Knudsen, M. R., et al. 2001, A&A, 380, 599
  • Baglin et al. (2002) Baglin, A., Auvergne, M., Catala, C., et al. 2002, in ASP Conf. Ser. 259: IAU Colloq. 185: Radial and Nonradial Pulsations as Probes of Stellar Physics, ed. C. Aerts, T. R. Bedding, & J. Christensen-Dalsgaard, 626
  • Balona (1994) Balona, L. A. 1994, MNRAS, 267, 1060
  • Balona et al. (1997) Balona, L. A., Dziembowski, W. A., & Pamyatnykh, A. 1997, MNRAS, 289, 25
  • Balona & Koen (1994) Balona, L. A. & Koen, C. 1994, MNRAS, 267, 1071
  • Balona & Laney (1995) Balona, L. A. & Laney, C. D. 1995, MNRAS, 276, 627
  • Balona & Laney (1996) Balona, L. A. & Laney, C. D. 1996, MNRAS, 281, 1341
  • Breger et al. (1993) Breger, M., Stich, J., Garrido, R., et al. 1993, A&A, 271, 482
  • Capilla & Fabregat (2002) Capilla, G. & Fabregat, J. 2002, A&A, 394, 479
  • de Cat (2002) de Cat, P. 2002, in Astronomical Society of the Pacific Conference Series, Vol. 259, IAU Colloq. 185: Radial and Nonradial Pulsationsn as Probes of Stellar Physics, ed. C. Aerts, T. R. Bedding, & J. Christensen-Dalsgaard, 196
  • Eyer (1998) Eyer, L. 1998, PhD thesis, PhD Thesis, Geneva University, Switzerland, (1998)
  • Fabregat & Capilla (2005) Fabregat, J. & Capilla, G. 2005, MNRAS, 358, 66
  • Frémat et al. (2006) Frémat, Y., Neiner, C., Hubert, A.-M., et al. 2006, A&A, 451, 1053
  • Frémat et al. (2005) Frémat, Y., Zorec, J., Hubert, A.-M., & Floquet, M. 2005, A&A, 440, 305
  • Gutiérrez-Soto et al. (2007) Gutiérrez-Soto, J., Fabregat, J., Suso, J., et al. 2007, A&A, 472, 565
  • Hauck & Mermilliod (1998) Hauck, B. & Mermilliod, M. 1998, A&AS, 129, 431
  • Hoffleit & Jaschek (1991) Hoffleit, D. & Jaschek, C. . 1991, The Bright star catalogue (New Haven, Conn.: Yale University Observatory, —c1991, 5th rev.ed., edited by Hoffleit, Dorrit; Jaschek, Carlos —)
  • Hubert & Floquet (1998) Hubert, A. M. & Floquet, M. 1998, A&A, 335, 565
  • Jaschek & Egret (1982) Jaschek, M. & Egret, D. 1982, in IAU Symp. 98: Be Stars, ed. M. Jaschek & H.-G. Groth, 261
  • Koubsky et al. (1989) Koubsky, P., Harmanec, P., Gulliver, A. F., Ballereau, D., & Chauville, J. 1989, Bulletin of the Astronomical Institutes of Czechoslovakia, 40, 31
  • Krzesinski & Pigulski (1997) Krzesinski, J. & Pigulski, A. 1997, A&A, 325, 987
  • Krzesiński et al. (1999) Krzesiński, J., Pigulski, A., & Kołaczkowski, Z. 1999, A&A, 345, 505
  • Kuschnig et al. (1997) Kuschnig, R., Weiss, W. W., Gruber, R., Bely, P. Y., & Jenkner, H. 1997, A&A, 328, 544
  • Lampens et al. (2005) Lampens, P., Frémat, Y., Garrido, R., et al. 2005, A&A, 438, 201
  • Lenz & Breger (2005) Lenz, P. & Breger, M. 2005, Communications in Asteroseismology, 146, 53
  • Levenhagen & Leister (2004) Levenhagen, R. S. & Leister, N. V. 2004, AJ, 127, 1176
  • Lynds (1960) Lynds, C. R. 1960, ApJ, 131, 390
  • Montgomery & O’Donoghue (1999) Montgomery, M. & O’Donoghue, D. 1999, Delta Scuti Newsletter, 13, p28
  • Moon (1986) Moon, T. 1986, Ap&SS, 122, 173
  • Neiner et al. (2005) Neiner, C., Hubert, A.-M., & Catala, C. 2005, ApJS, 156, 237
  • Pamyatnykh (1999) Pamyatnykh, A. A. 1999, Acta Astronomica, 49, 119
  • Percy et al. (2002) Percy, J. R., Hosick, J., Kincaide, H., & Pang, C. 2002, PASP, 114, 551
  • Perryman et al. (1997) Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A&A, 323, L49
  • Pigulski et al. (2001) Pigulski, A., Kopacki, G., & Kołaczkowski, Z. 2001, A&A, 376, 144
  • Pojmanski (2002) Pojmanski, G. 2002, Acta Astronomica, 52, 397
  • Porter & Rivinius (2003) Porter, J. M. & Rivinius, T. 2003, PASP, 115, 1153
  • Reese et al. (2006) Reese, D., Lignières, F., & Rieutord, M. 2006, A&A, 455, 621
  • Rivinius et al. (2001) Rivinius, T., Baade, D., Štefl, S., et al. 2001, A&A, 369, 1058
  • Saio et al. (2007) Saio, H., Cameron, C., Kuschnig, R., et al. 2007, ApJ, 654, 544
  • Schaller et al. (1992) Schaller, G., Schaerer, D., Meynet, G., & Maeder, A. 1992, A&AS, 96, 269
  • Schwarzenberg-Czerny (1991) Schwarzenberg-Czerny, A. 1991, MNRAS, 253, 198
  • Stankov & Handler (2005) Stankov, A. & Handler, G. 2005, ApJS, 158, 193
  • Vaníček (1971) Vaníček, P. 1971, Ap&SS, 12, 10
  • Waelkens et al. (1998) Waelkens, C., Aerts, C., Kestens, E., Grenon, M., & Eyer, L. 1998, A&A, 330, 215
  • Walker et al. (2005a) Walker, G. A. H., Kuschnig, R., Matthews, J. M., et al. 2005a, ApJ, 635, L77
  • Walker et al. (2005b) Walker, G. A. H., Kuschnig, R., Matthews, J. M., et al. 2005b, ApJ, 623, L145
  • Zerbi et al. (1997) Zerbi, F. M., Garrido, R., Rodriguez, E., et al. 1997, MNRAS, 290, 401
Be star V Sp.Type Comp. Check References
HD 42259 8.89 B0V HD 294788 HD 42369 2
HD 42406 8.0 B4IV 300 1
HD 43264 6.05 B9III 284 1
HD 43285 6.05 B5IV 274 HD 44783 HD 43526 1
HD 43777 7.8 B5 2
HD 43913 7.88 A0 2
HD 44783 6.23 B9II 227 1
HD 45260 9.04 B8 2
HD 45626 9.25 B7 2
HD 45901 8.85 B0.5IV 173 1
HD 45910 6.74 B2III 2
HD 46380 8.05 B1.5IV 310 HD 46541 HD 46519 1
HD 46484 7.65 B0.5IV 130 HD 46106 HD 46748 1
HD 47054 5.52 B7III 229 1
HD 47160 7.10 B8IV 158 1
HD 47359 8.87 B0IV 469 1
HD 47761 8.72 B2V 50 2
HD 48282 8.79 B3V 188 2
HD 49330 8.95 B0.5IV 285 HD 50086 HD 50230 1
HD 49567 6.15 B3III 94 1
HD 49585 9.13 B0.5IV 325 HD 50086 HD 50230 1
HD 49787 7.55 B1V 169 1
HD 49992 8.98 B1 2
HD 50083 6.91 B2III 193 1
HD 50087 9.08 B8III HD 50086 HD 50230 2
HD 50209 8.36 B8IV 209 HD 50086 HD 50230 1
HD 50424 8.92 B9 2
HD 50581 7.54 A0IV 250 1
HD 50696 8.87 B1.5III 366 HD 50086 HD 50230 1
HD 50820 6.27 B3IV 2
HD 50868 7.87 B1.5V 276 1
HD 50891 8.88 B0.5V 231 HD 50348 HD 51150 1
HD 51193 8.06 B1.5IV 224 HD 50348 HD 51150 1
HD 51404 9.30 B1.5V 353 HD 50348 HD 51150 1
HD 51452 8.08 B0IV 309 HD 50348 HD 51150 1
HD 51506 7.68 B2.5IV 186 1
HD 53085 7.21 B4IV 222 1
HD 53367 6.97 B0IV 70 2
HD 54464 8.4 B2.5III 177 1
HD 55135 7.34 B2.5V 264 1
HD 55439 8.47 B2 2
HD 55606 9.04 B0.5V 361 1
HD 55806 9.11 B7III 202 1
HD 57386 8.0 B1.5V 2
HD 57539 6.6 B5III 155 1
HD 259431 8.71 B6 95 2
HD 259440 9.12 B0 430 2
HD 259597 9.33 B1V 2
HD 293396 8.59 B1V 2
Table 5: Studied Be stars in the Galactic Anticentre direction. ID numbers and SIMBAD V magnitudes are given for each target in cols. 1 and 2. The spectral type and  are gathered in cols. 3 and 4. Comparison and check stars used for the differential photometry are given in cols. 5 and 6. References of the spectral type and  are given in col. 7. References: : (1) - Frémat et al. (2006); (2) - Simbad database.
Be star V Sp.Type Comp. Check References
HD 166917 6.69 B8III 173 1
HD 168797 6.14 B2.5III 279 HD 170200 SAO 123607 1
HD 170009 8.00 B2.5III 181 1
HD 170714 7.38 B1.5IV 280 HD 171305 HD 169581 1
HD 171219 7.65 B5III 314 HD 170200 SAO 123607 1
HD 173219 7.82 B0.5IV 66 1
HD 173292 8.60 B8 2
HD 173371 6.89 B7IV 295 1
HD 173530 8.87 B7III 246 1
HD 173637 9.29 B1IV 207 HD 173693 HD 173850 1
HD 173817 8.65 B6IV 276 HD 172868 HD 173422 1
HD 174512 8 B8 2
HD 174513 8.70 B1.5IV 261 HD 174395 HD 174650 1
HD 174571 8.89 B1.5V 250 1
HD 174705 8.34 B1.5IV 341 1
HD 174886 7.77 B4III 79 1
HD 175869 5.56 B8III 171 1
HD 176159 8.98 B5IV 243 1
HD 176630 7.70 B3III 188 1
HD 178479 8.92 B3V 109 1
HD 179343 6.94 B8III 155 1
HD 179405 9.12 B2IV 248 HD 179846 HD 178598 1
HD 180126 8.00 B2IV 252 1
HD 181231 8.58 B5IV 259 HD 182198 HD 182786 1
HD 181308 8.70 B5IV 261 1
HD 181367 9.36 B6IV 292 HD 182198 HD 182786 1
HD 181709 8.79 B6III 291 1
HD 181803 9.10 B7III 190 1
HD 183656 6.09 B6V 270 HD 183227 HD 183563 2
HD 184203 9.16 B9 2
HD 184279 6.98 B0V 137 HD 183227 HD 183563 1
HD 184767 7.18 A0III 49 1
HD 194244 6.14 B9III 232 1
HD 230579 9.10 B1IV 343 1
BD -094858 8.84 B1.5V 115 1
Table 6: The same as for Table 5, but for the stars in the Galactic Centre direction.

Appendix A Notes on individual stars

Here we present some notes on all the Be stars observed at the OSN and the Be stars that have shown periodicity in the ASAS-3 or Hipparcos light curve. For a detail study of stars HD 168797 (NW Ser) and HD 179405 (V1446 Aql), see Gutiérrez-Soto et al. (2007). We have divided the sample in stars located in the Galactic Centre and Anticentre directions.

a.1 Stars in the Galactic Anticentre direction

a.1.1 Hd 42259

The Hipparcos light curve shows variability with an amplitude from peak to peak of 6 hundredths of magnitude.

We observed this star in 2006 at the OSN. The amplitude of the light curve varies from night to night, suggesting the presence of multiperiodicity. Strong peaks appear in the periodogram of the filter at frequency  and its 1-day aliases. Results with the filters are similar within errors. A phase plot with this frequency is displayed in Fig. 4. A frequency at  has also a good fit and good phase diagram. The time span of the observations does not allow us to distinguish between these two frequencies.

Figure 4: Light curve of the star HD 42259 folded in phase with the frequency , for the OSN data in the filter.

In the analysis of the ASAS-3 dataset, we find a frequency at (Fig. 5, upper panel), which is similar within errors to the one detected at the OSN. After prewhitening for this frequency, we find another significant frequency at . The 1-day alias  gives also a similar fit, although F2 has a less scattered phase diagram (Fig. 5, bottom panel).

Figure 5: Light curve of the star HD 42259 folded in phase with the frequency  for the ASAS-3 dataset (top) and with the frequency  for the residuals after prewhitening for F1 (bottom).

a.1.2 Hd 43285

Peaks at frequencies and 6.173  are detected in the Hipparcos data, although the resulting phase diagrams are very scattered.

We observed this star during only one season in 2003 at the OSN. Our light curve spanning 9 hours does not show any sign of variation at any frequency with an amplitude exceeding 2 mmag in the filters and 3 mmag in the filter. This star is saturated in the ASAS-3 database.

a.1.3 Hd 45901

This star has only been observed with Hipparcos and ASAS-3. A long-term trend is present in the Hipparcos light curve. After prewhitening for this trend, significant peaks at frequencies 0.548  and 0.466  are clearly detected in the periodogram. The less scattered phase diagram is obtained with frequency 0.466 , which is shown in Fig. 6.

Figure 6: Light curve of the star HD 45901 folded in phase with the frequency  for the Hipparcos dataset.

The ASAS-3 data show a long-term variation complicated to be modelled which prevents us to search for short-term variability in this dataset.

a.1.4 Hd 46380

The Hipparcos light curve shows mid- and long-term variability, which does not allow us to search for short-term periodicity.

The photometric observations collected at the OSN extend over two seasons, 2003 and 2006. The 2003 dataset confirms the variability of the star. A frequency of 3.49  appears clearly in the periodogram, although it is very uncertain, due to the short time coverage (6 hours). The light curve obtained in 2006 shows clear variability at frequency  in all filters. The phase diagram for this frequency is very scattered, due to the fact that the amplitude of the signal is 3 mmag. Note that the frequency obtained in 2003 is twice the frequency found in 2006. The light curve obtained in 2006 has been folded in phase with the frequency 3.49 , with a negative result. More observations are required to confirm the detected frequency.

The ASAS-3 light curve shows a long-term trend which does not allow us to search for short periods.

a.1.5 Hd 46484

This star has been detected as spectroscopic variable by Hubert . No results have been obtained from the Hipparcos data, due to the bad sampling of the data and the few observed points.

Our 4-day light curve obtained in 2004 at the OSN shows variability with an amplitude of the order of 5 mmag. A frequency at  and its 1-day aliases appear in the periodogram of the light curves. The phase diagram of the light curve folded with the frequency  is presented in Fig. 7. This star is saturated in the ASAS-3 database.

Figure 7: Phase diagram of HD 46484 folded with the frequency  for the OSN data in the filter.

a.1.6 Hd 48282

A long-term trend is present in the light curve of Hipparcos and ASAS-3, which has been removed with a low-order polynomial. No results have been found with the Hipparcos data. The frequency analysis of the ASAS-3 dataset yields a main variation at . The corresponding phase diagram (Fig. 8) is very scattered, probably due to the presence of the long-term trend.

Figure 8: Phase diagram of HD 48282 folded with the frequency  for the ASAS-3 data.

a.1.7 Hd 49330

The Hipparcos data show a clear periodicity of d, i.e. at frequency .

This star was observed at the OSN during three observing runs, in 2003, 2004 and 2006. In 2003, our 8.5-hour light curve presents clear variability. The short-time coverage does not allow us to perform a period search. In 2004, our 4-day light curve does not show this variation. Only peaks at  are present in the periodograms of each filter, with an incoherent phase diagram. In 2006, a frequency at  and its 1-day aliases strongly appear in the periodogram.

As a final check, we have combined the data of the three seasons, which allows us to detect a frequency at . This frequency is a 1-day alias of the frequency found in the 2006 data. In Fig. 9 we show the light curve in phase with this frequency for the three seasons with different symbols and colours. This figure suggests that this frequency has been present in the light curve over the three years, but its amplitude has changed dramatically, from 13 mmag in 2003 to 4 mmag in 2004 and 8 mmag in 2006 in the filter. Errors in the amplitude are of the order of 1 mmag in this filter.

Figure 9: Phase diagram of the combined dataset obtained at the OSN for star HD 49330 folded with the frequency . Triangles in red, crosses in green and asterisks in blue correspond to the 2003, 2004 and 2006 observations respectively.

The light curve of the ASAS-3 data shows a quasi-cyclical variation of about 1600 days, disturbed by an outburst of shorter duration of about 200 days. We noticed that the OSN data obtained in 2003 was observed during this short outburst.

a.1.8 Hd 49585

Figure 10: Successive periodograms and spectral window shifted at frequency F1 of the light curve of HD 49585 in the filter. The dashed and solid vertical arrows stand for the position of frequencies  and  respectively.

There are no Hipparcos data for this faint star. This star was observed during one season at the OSN in 2004. Only detailed analysis for the filter is provided here, since results with other filters are similar within errors. The periodogram shows strong peaks at frequency  and its 1-day aliases (see middle panel of Fig. 10). In the top panel of Fig. 10, we represent the spectral window of the light curve shifted at frequency F1. Another peak is present in the data at frequency , which is not seen in the spectral window. Periodogram of the residuals after prewhitening for frequency F1 is depicted in the bottom panel of Fig. 10. The 1-day alias of F2 ( ), gives a similar fit, although phase diagram for F2 is much better. The phase plots for frequencies F1 and F2 are displayed in Fig. 11.

Figure 11: Phase plots of HD 49585 folded with the frequency , after prewhitening for (top) and with the frequency (bottom), after prewhitening for .

A long-term trend is apparent in the light curve of the ASAS-3 dataset, which does not allow us to search for short-term periodicity.

a.1.9 Hd 50087

We observed this star in 2006 at the OSN. Different frequencies are detected in the four filters with very low signal-to-noise ratio, suggesting that these frequencies are artifacts. The light curve of the ASAS-3 data does not show any significant variation.

a.1.10 Hd 50209

The Hipparcos data analysis yields to a frequency at , considered as uncertain. Another peak at frequency  is also present, although with a lower amplitude.

Figure 12: Phase plot of HD 50209 folded with the frequency  for the combined data obtained at the OSN. Triangles in red, crosses in green and asterisks in blue correspond to the 2003, 2004 and 2006 observations respectively.
Figure 13: Phase plot of HD 50209 folded with the frequency  for the ASAS-3 dataset.

This star was observed during three observing runs at the OSN. The 2003 dataset shows clear variability, but the time span of 9 hours does not allow us to perform a spectral analysis. In 2004, a frequency at  is clearly found in all filters, while in 2006 a similar frequency at  is also detected in all filters. The combined data of the three seasons allows us to refine the frequency to (see Fig. 12). Note that we have removed the average magnitude of each year before combining the datasets.

The periodogram of the ASAS-3 dataset shows significant peaks at frequency  and its daily aliases. The phase plot with this frequency is depicted in Fig. 13. This frequency is probably a 1-day alias of the frequency detected at the OSN. However, the phase diagram of the ASAS-3 dataset with the frequency  and the light curve obtained at the OSN folded with the frequency  are very scattered. This could be due to the fact that the ASAS-3 dataset contains long- and mid-term trends or to the presence of multiple periods. After prewhitening for the frequency  in the ASAS-3 dataset, a frequency at  appears in the periodogram, but the phase diagram with this frequency is very scattered. More observational data is required to confirm the multiperiodicity of this star.

a.1.11 Hd 50696

Figure 14: Phase plot of HD 50696 folded with the frequency  for the OSN data obtained in 2004.

There are no Hipparcos data for this faint star. We observed this source during two seasons at the OSN. The 2003 dataset shows clear variability, but the time span does not allow us to perform any period analysis. A clear frequency at  is detected in the 2004 photometry through the four filters. We present the phase diagram, only for the filter data for clarity, in Fig. 14. Note that the amplitude of the variation is of the order of 12 mmag. The phase diagram of the data obtained in 2003 is compatible with this frequency.

A long-term variation is found in the ASAS-3 dataset, which stops us from searching for short-term variability.

a.1.12 Hd 50891

There are no Hipparcos data for this star. This star has been observed only in 2004 at the OSN. The periodogram shows significant peaks at frequency  and its 1-day aliases for all the filters. We present the phase curve with this frequency in Fig. 15.

Figure 15: Phase plot of HD 50891 folded with the frequency  for the OSN data obtained in 2004.

A long-term trend is apparent in the light curve of the ASAS-3 dataset, which does not allow us to search for short-term periodicity.

a.1.13 Hd 51193

Figure 16: Phase plot of HD 51193 folded with the frequency  in the filter for the OSN data obtained in 2004.
Figure 17: Light curve of HD 51193 for the OSN data obtained in 2006. Note the variation of the amplitude from night to night.

The Hipparcos light curve shows clear periodicity at frequency .

This star has been observed at the OSN in 2004 and 2006. A long-term trend is present in the light curve of 2004, which we have removed with a low-order polynomial function. We have found a frequency at  in the filters, which is similar to a 1-day alias of the Hipparcos frequency. Both frequencies have a similar fit for the OSN data, although the phase diagram with the frequency  is much better (see Fig. 16). In 2006, the amplitude seems to vary from night to night, as shown in Fig. 17. Unfortunately, we could not find any significant frequency with a coherent phase diagram.

The light curve obtained with the ASAS-3 project shows a long-term trend. After prewhitening for this trend with a low-order polynomial, a peak at frequency  and its daily aliases appear in the periodogram. The frequency fulfils the SNR criterion, but the phase diagram is very scattered. Note that this frequency is similar to the frequency detected in the Hipparcos data and the 1-day alias of the frequency detected at the OSN.

a.1.14 Hd 51404

Figure 18: Phase plots of HD 51404 folded with the frequency  after prewhitening for (top) and with the frequency  after prewhitening for  (bottom) in the filter of the 2004 dataset.

There are no Hipparcos data for this star. This star was only observed in 2004 at the OSN. It is clearly variable with an amplitude of 10 mmag. Strong peaks appear in the periodogram of the filters at frequency  and its daily aliases. The light curve folded with this frequency is depicted in Fig. 18 (upper panel). After prewhitening for this frequency, another significant frequency at  is detected, also in the filters. The phase plot with this frequency is displayed in the lower panel of Fig. 18, only for the filter data for clarity.

The ASAS-3 light curve shows short- and long-term variability with a standard deviation of the observations of 24 mmag. However, no significant frequencies are found.

a.1.15 Hd 51452

Figure 19: Phase plot of HD 51452 folded with the frequency  in the filter for the OSN data.

There are no Hipparcos data for this star. We observed this star at the OSN in 2004. The light curve shows variability with the frequency , but only in the filters, and thus, this frequency is considered as uncertain. The phase diagram with this frequency is displayed in Fig. 19 for filter . The ASAS-3 data does not show any indication of variability.

a.2 Stars in the Galactic Centre Direction

a.2.1 Hd 170 714

The few datapoints collected by the Hipparcos mission for this star do not allow us to search for short-term variability.

This star was observed at the OSN in 2005. Strong peaks at frequency  and its 1-day aliases appear in the periodogram of all the filters. The amplitude corresponding to this frequency is 10 mmag for the filters ( mmag) and 13 for the filter ( mmag). In Fig. 20 we represent the light curve folded in phase with the detected frequency for the filter.

Figure 20: Phase plot of HD 170 714 folded with the frequency  in the filter for the OSN data.

This star is saturated in the ASAS-3 dataset.

a.2.2 Hd 171 219

This star is classified as constant in the Hipparcos catalogue. We have re-analysed the light curve and no short-term variability has been found. We observed this star at the OSN during two seasons, in 2002 and 2003. The periodograms of both datasets do not show any significant peak greater than 2 mmag. We conclude that the star is not variable at our detection level. This star is saturated in the ASAS-3 database.

a.2.3 Hd 173 292

The Hipparcos data show short-term variability with a standard deviation of 30 mmag. However, no significant frequencies have been detected in the Fourier analysis.

The spectral analysis of the ASAS-3 dataset shows peaks at frequency  and its daily aliases. A phase diagram with this frequency is depicted in Fig. 21. Note the high amplitude of the variation (16 mmag).

This star was not observed at the OSN.

Figure 21: Phase plot of HD 173 292 folded with the frequency  for the ASAS-3 dataset.
Figure 22: Phase plot of HD 173 530 with the frequency  for the ASAS-3 dataset.

a.2.4 Hd 173 530

There are no Hipparcos data for this faint star. A significant peak at frequency  appears in the periodogram of the ASAS-3 light curve with an amplitude of 6 mmag. A phase diagram for this frequency is plotted in Fig. 22.

This star has not been observed at the OSN.

a.2.5 Hd 173 637

The Hipparcos data show a long-term variation, which does not allow us to search for short-term periodicity.

This star was observed at the OSN during two seasons, in 2003 and 2005. However, only 19 datapoints were obtained in 2005 and therefore no result can be achieved with this dataset. Short-term variability is found in the 2003 dataset. We detect significant peaks in the frequency domain at  and its 1-day aliases. The amplitude of this frequency is of the order of 5 mmag in the filters and the SNR is 4.8. The phase diagram with this frequency in the filter is displayed in Fig. 23.

Figure 23: Phase plot of HD 173 637 folded with the frequency  in the filter for the OSN data.
Figure 24: Light curve of HD 173 637 for the ASAS-3 dataset.

A long-term trend is present in the ASAS-3 light curve (Fig. 24), superimposed on which we see several outburst (at least 3) with an amplitude of 0.1 mag and a time difference of around 360 to 380 days. We have not searched for short-term periodicity because of the complexity of the light curve.

a.2.6 Hd 173 817

The Hipparcos light curve does not show any indication of variability.

This star was observed at the OSN in 2003. The light curve shows short-term variability with the frequency  in the filters, which fulfils the SNR criterion. However, the amplitude is of the order of 3 mmag and thus, the phase curve is very scattered.

A long-term trend is present in the ASAS-3 light curve. We do not find short-term variability after removing the long-term variation. The frequency found at the OSN is not detected in the ASAS-3 dataset, probably due to the fact that the ASAS-3 photometry have lower precision. More observational data are required to confirm the periodicity of this star.

a.2.7 Hd 174 513

Figure 25: Phase plot of HD 174 513 folded with the frequency , after prewhitening for (top) and with the frequency , after prewhitening for (bottom) for the ASAS-3 dataset.

Long- and short-term variations are found in the Hipparcos light curve. However, the frequency analysis does not yield to any frequency with a coherent phase diagram.

The analysis of the dataset obtained at the OSN in 2002 confirms its variability with frequencies at  and its 1-day aliases. However, this frequency is very uncertain due to the low amplitude (4 mmag) and the few observed datapoints.

In the ASAS-3 dataset, a long-term trend is present, which have been removed with a low-order polynomial. The periodogram of the residual shows a strong peak at the low-frequency (i.e. 36.90 d) and its daily aliases. A phase plot for this frequency is displayed in the upper panel of Fig. 25. This frequency is too low to be produced by pulsations and it is probably caused by a binary component. Prewhitening for this frequency, we found an additional significant frequency at with an amplitude of 8 mmag, which is similar to a 1-day alias of frequency found at the OSN (3.34 ). A phase diagram of this frequency is plotted in the lower panel of Fig. 25. More photometric data are required to confirm the frequency F2.

a.2.8 Hd 174705

Figure 26: Phase plot of HD 174 705 folded with the frequency  for the ASAS-3 dataset.

There is neither Hipparcos nor OSN data for this star. The ASAS-3 light curve contains individual subsets with different mean magnitudes due to the fact that the star were observed in several different fields, as pointed out by Pojmanski (2002). Therefore, the mean magnitude has first been subtracted from each subset and then the subsets have been combined. A significant peak appears at frequency in the periodogram of the combined dataset. The light curve folded in phase with this frequency is displayed in Fig. 26.

a.2.9 Hd 181231

The Hipparcos data do not show any indication of variability. We observed this star at the OSN in 2003. Unfortunately, the comparison star HD 182 786 showed variability during the observing run, and thus no reliable result can be obtained with this comparison star. Using the check star HD 182 198, a significant peak appears in the periodogram of all filters at frequency , but the phase coverage is not complete. In addition, we have analysed photometric data obtained by Ennio Poretti at San Pedro Martir (SPM). HD 181414 was used in the differential photometry as the comparison star. Frequency  is also detected in the filters. The amplitude associated to this frequency is 4 and 3 mmag at the OSN and SPM respectively.

We also performed a detailed analysis of the ASAS-3 light curve, which shows short-term variability with the frequency . However, this frequency is considered as uncertain due to the low value of the associated amplitude (5 mmag). The ASAS-3 dataset has also been plotted in phase with the frequency , resulting in a scattered diagram. The periodogram of the combined data (OSN, SPM, ASAS-3) yields a frequency of . However, the phase diagram has a large scatter and therefore we cannot confirm this frequency.

a.2.10 Hd 181 367

There are no Hipparcos data for this star. No short-term variability is found in the light curve obtained at the OSN in 2003 with an amplitude exceeding 4 mmag. The same conclusions have been reached by Ennio Poretti in the analysis of the SPM data for this star.

The ASAS-3 light curve shows a long-term trend. After removing it with a low-order polynomial, we do not find any indication of variability.

a.2.11 Hd 183 656

HD 183 656 is a spectroscopic binary shell star (SB1) with an orbital period of 214.75 d (Koubsky et al. 1989). This star was found variable by Lynds (1960), who proposed a period of 0.8518 d (i.e. ). Short-term variability with a period of 0.652 d (i.e. ) was obtained from the Hipparcos photometry (Hubert & Floquet 1998).

We observed this star at the OSN in 2002 and 2005. In the periodogram of the 2002 light curve, the most powerful peak appears at frequency , although the phase diagram is very scattered. Note that the 1-day alias of this frequency is Lynds’ period. However, the Hipparcos data appear very noisy when folded with any of the two frequencies. The 10-day light curve obtained in 2005 shows a long-term trend, which has been removed with a low-order polynomial function. After prewhitening for this trend, a significant peak appears at frequency  in the periodogram of the light curve in the filters with an amplitude of 7 mmag (Fig. 27). The  frequency is not detected in the 2005 data. This star is saturated in the ASAS-3 database.

Figure 27: Residuals of HD 183 656 in phase with the frequency , after removing the long-term trend.

a.2.12 Hd 184 279

Percy et al. (2002) performed an autocorrelation analysis of the Hipparcos data for this star and found a period of days (i.e. ), which they presented as uncertain. A re-analysis of the Hipparcos data with the methods explained above yields a period of 0.156 d (i.e. ), although the phase diagram is very scattered.

We observed this star at the OSN in 2002 and 2005. The periodogram of the 2002 dataset shows a peak at frequency , but we cannot confirm this frequency due to the few points of the sample. The 3-night light curve obtained in 2005 confirms the presence of short-term variability for this star. However, frequencies found in the spectral analysis have very scattered phase diagrams and thus are also very uncertain. The long-term trend which is present in the ASAS-3 dataset does not allow us to search for short-period variability. We conclude that this star is variable, but more observations are needed to confirm its periodicity.

Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
247317
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description