A note on finite-time Lyapunov dimension of the Rossler attractor

A note on finite-time Lyapunov dimension of the Rossler attractor

N. V. Kuznetsov Corresponding author: nkuznetsov239@gmail.com Faculty of Mathematics and Mechanics, St. Petersburg State University, Peterhof, St. Petersburg, Russia Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland    T. N. Mokaev Faculty of Mathematics and Mechanics, St. Petersburg State University, Peterhof, St. Petersburg, Russia
July 11, 2019

For the Rössler system we verify Eden’s conjecture on the maximum of local Lyapunov dimension. We compute numerically finite-time local Lyapunov dimensions on the Rössler attractor and embedded unstable periodic orbits. The UPO computation is done by Pyragas time-delay feedback control technique.

chaos, hidden attractors, Lyapunov exponents, Lyapunov dimension, unstable periodic orbit, time-delay feedback control

I Rössler attractor and Pyragas stabilization of embedded unstable periodic orbits

Consider the following Rössler system Rossler-1976 ()


with arbitrary real parameters . If , then system (1) has the following equilibria:


For some values of parameters system (1) exhibits chaotic behavior. To get a visualization of chaotic attractor one needs to choose an initial point in the basin of attraction of the attractor and observe how the trajectory, starting from this initial point, after a transient process visualizes the attractor: an attractor is called a self-excited attractor if its basin of attraction intersects with any open neighborhood of an equilibrium, otherwise, it is called a hidden attractor LeonovKV-2011-PLA (); LeonovK-2013-IJBC (); LeonovKM-2015-EPJST (); Kuznetsov-2016 (). It was discovered numerically by Rössler that in the phase space of system (1) with parameters , , there exist a chaotic attractor of spiral shape, which is self-excited with respect to both equilibria .

Figure 1: Period-1 (red, period ) UPO in system (1) with parameters , , , stabilized using TDFC method.

One of the building blocks of chaotic attractor are embedded unstable periodic orbits (UPOs). An effective method for the computation of UPOs is the time-delay feedback control (TDFC) approach, suggested by K. Pyragas Pyragas-1992 () (see also discussions in KuznetsovLS-2015-IFAC (); ChenY-1999 (); CruzVillar-2007 (); LehnertHFGFS-2011 ()). Let be an UPO with period , , satisfying a differential equation


To compute the UPO, we add the TDFC:


where are vectors and is a real gain. If , then along the UPO, and periodic solution of system (4) coincides with periodic solution of system (3).

For the Rössler system (1) we solved numerically system (4) and stabilized a period-1 UPO with period (see Fig. 1).

Then for the initial point , chosen on the UPO , }, we numerically compute the trajectory of system (4) without the stabilization (i.e. with ) on sufficiently large time interval (see Fig. (b)b). One can see that on the initial small time interval , even without the control, the obtained trajectory traces approximately the ”true” periodic orbit . But for without control the trajectory diverge from and wind on the attractor .

Ii Finite-time Lyapunov dimension and Eden conjecture

For an attractor, an interesting question (Eden-1989-PhD, , p.98) (known as Eden conjecture) is whether the supremum of the local Lyapunov dimensions is achieved on a stationary point or an unstable periodic orbit embedded in the strange attractor. In general, a conjecture on the Lyapunov dimension of self-excited attractor Kuznetsov-2016-PLA (); KuznetsovLMPS-2018 () is that for a typical system the Lyapunov dimension of a self-excited attractor does not exceed the Lyapunov dimension of one of unstable equilibria, the unstable manifold of which intersects with the basin of attraction and visualize the attractor.

Below we follow the concept of the finite-time Lyapunov dimension Kuznetsov-2016-PLA (); KuznetsovLMPS-2018 (), which is convenient for carrying out numerical experiments with finite time. The finite-time local Lyapunov dimension Kuznetsov-2016-PLA (); KuznetsovLMPS-2018 () can be defined via an analog of the Kaplan-Yorke formula with respect to the set of finite-time Lyapunov exponents:


where . Then the finite-time Lyapunov dimension (of dynamical system generated by (3) on compact invariant set ) is defined as


The Douady–Oesterlé theorem DouadyO-1980 () implies that for any fixed the finite-time Lyapunov dimension, defined by (6), is an upper estimate of the Hausdorff dimension: . The best estimation is called the Lyapunov dimension Kuznetsov-2016-PLA ()

Figure 2: and on the time interval along the UPO (red) and trajectory integrated without stabilization (blue). Both trajectories start from the point .

For the Rössler attractor the Lyapunov dimension was estimated as  FroehlingCFPS-1981 (),  SanoS-1985 (),  Sprott-2003 (); Fuchs-2013 (), and  AwrejcewiczKEDBK-2018 ()); see also KuznetsovMV-2014-CNSNS (); SprottL-2017 ().

Below we use the adaptive algorithm KuznetsovLMPS-2018 () for the computation of the finite-time Lyapunov dimension and exponents. We compute: maximum of the finite-time local Lyapunov dimensions at the points of grid filling the attractor , i.e. ; finite-time Lyapunov dimensions for the stabilized UPO with periods .

The comparison of the obtained values of and computed along the stabilized UPO and the trajectory without stabilization gives us the following results. On the initial part of the time interval, one can indicate the coincidence of these values with a sufficiently high accuracy. For the period-1 UPO and for the unstabilized trajectory the largest Lyapunov exponents coincide up to the 5th decimal place inclusive on the interval . After the difference in values becomes significant and the corresponding graphics diverge in such a way that the part of the graph corresponding to the unstabilized trajectory is lower than the part of the graph corresponding to the UPO (see Fig. (b)b).

The equilibria has simple eigenvalues and, thus, we have .

The period-1 UPO with period has the following multipliers: , , . Thus, for the local Lyapunov dimension of the UPO we obtain .

Iii Conclusion

In this note we have confirmed the Eden conjecture for the Rössler system (1) and obtained the following relations between the Lyapunov dimensions:

Concerning the time of integration, remark that while the time series obtained from a physical experiment are assumed to be reliable on the whole considered time interval, the time series produced by the integration of mathematical dynamical model can be reliable on a limited time interval only due to computational errors (caused by finite precision arithmetic and numerical integration of ODE). Thus, in general, the closeness of the real trajectory and the corresponding pseudo-trajectory calculated numerically can be guaranteed on a limited short time interval only. However, for two different long-time pseudo-trajectories and visualizing the same attractor, the corresponding finite-time LEs can be, within the considered error, similar due to averaging over time and similar sets of points and . At the same time, the corresponding real trajectories may have different LEs, e.g. may correspond to an unstable periodic trajectory which is embedded in the attractor and does not allow one to visualize it.


  • (1) O. E. Rossler, An equation for continuous chaos, Physics Letters A 57 (5) (1976) 397–398.
  • (2) G. Leonov, N. Kuznetsov, V. Vagaitsev, Localization of hidden Chua’s attractors, Physics Letters A 375 (23) (2011) 2230–2233. doi:10.1016/j.physleta.2011.04.037.
  • (3) G. Leonov, N. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits, International Journal of Bifurcation and Chaos 23 (1), art. no. 1330002. doi:10.1142/S0218127413300024.
  • (4) G. Leonov, N. Kuznetsov, T. Mokaev, Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion, The European Physical Journal Special Topics 224 (8) (2015) 1421–1458. doi:10.1140/epjst/e2015-02470-3.
  • (5) N. Kuznetsov, Hidden attractors in fundamental problems and engineering models. A short survey, Lecture Notes in Electrical Engineering 371 (2016) 13–25, (Plenary lecture at International Conference on Advanced Engineering Theory and Applications 2015). doi:10.1007/978-3-319-27247-4_2.
  • (6) K. Pyragas, Continuous control of chaos by selfcontrolling feedback, Phys. Lett. A. 170 (1992) 421–428.
  • (7) N. Kuznetsov, G. Leonov, M. Shumafov, A short survey on Pyragas time-delay feedback stabilization and odd number limitation, IFAC-PapersOnLine 48 (11) (2015) 706 – 709. doi:10.1016/j.ifacol.2015.09.271.
  • (8) G. Chen, X. Yu, On time-delayed feedback control of chaotic systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 46 (6) (1999) 767–772.
  • (9) C. A. Cruz-Villar, Optimal stabilization of unstable periodic orbits embedded in chaotic systems, Revista mexicana de física 53 (5) (2007) 415–420.
  • (10) J. Lehnert, P. Hövel, V. Flunkert, P. Guzenko, A. Fradkov, E. Schöll, Adaptive tuning of feedback gain in time-delayed feedback control, Chaos: An Interdisciplinary Journal of Nonlinear Science 21 (4) (2011) 043111.
  • (11) A. Eden, An abstract theory of L-exponents with applications to dimension analysis (PhD thesis), Indiana University, 1989.
  • (12) N. Kuznetsov, The Lyapunov dimension and its estimation via the Leonov method, Physics Letters A 380 (25–26) (2016) 2142–2149. doi:10.1016/j.physleta.2016.04.036.
  • (13) N. Kuznetsov, G. Leonov, T. Mokaev, A. Prasad, M. Shrimali, Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system, Nonlinear Dynamics 92 (2) (2018) 267–285. doi:10.1007/s11071-018-4054-z.
  • (14) A. Douady, J. Oesterle, Dimension de Hausdorff des attracteurs, C.R. Acad. Sci. Paris, Ser. A. (in French) 290 (24) (1980) 1135–1138.
  • (15) H. Froehling, J. Crutchfield, D. Farmer, N. Packard, R. Shaw, On determining the dimension of chaotic flows, Physica D: Nonlinear Phenomena 3 (3) (1981) 605–617.
  • (16) M. Sano, Y. Sawada, Measurement of the Lyapunov spectrum from a chaotic time series, Physical Review Letters 55 (10) (1985) 1082.
  • (17) J. Sprott, Chaos and time-series analysis, Oxford University Press, Oxford, 2003.
  • (18) A. Fuchs, Nonlinear dynamics in complex systems, Springer, 2013.
  • (19) J. Awrejcewicz, A. Krysko, N. Erofeev, V. Dobriyan, M. Barulina, V. Krysko, Quantifying chaos by various computational methods. Part 1: Simple systems, Entropy 20 (3) (2018) 175.
  • (20) N. Kuznetsov, T. Mokaev, P. Vasilyev, Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor, Commun Nonlinear Sci Numer Simulat 19 (2014) 1027–1034.
  • (21) J. C. Sprott, C. Li, Asymmetric bistability in the Rössler system, Acta Physica Polonica B 48 (1) (2017) 97.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description