A Multiscale Pyramid Transform for Graph Signals

A Multiscale Pyramid Transform for Graph Signals

David I Shuman, Mohammad Javad Faraji, and Pierre Vandergheynst This work was supported in part by FET-Open grant number 255931 UNLocX.Part of this work appeared in the master’s thesis [faraji_thesis] and was presented at the Duke Workshop on Sensing and Analysis of High-Dimensional Data in July 2011. Slides and video are available at http://sahd.pratt.duke.edu/2011_files/Videos_and_Slides.html David I Shuman is with the Department of Mathematics, Statistics, and Computer Science, Macalester College, St. Paul, MN 55105, USA (email: dshuman1@macalester.edu). Mohammad Javad Faraji is with the Computational Neuroscience Laboratory (LCN), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Communication Sciences and Brain Mind Institute, School of Life Sciences, CH-1015 Lausanne, Switzerland (email: mohammadjavad.faraji@epfl.ch). Pierre Vandergheynst is with the Signal Processing Laboratory (LTS2), Ecole Polytechnique Fédérale de Lausanne (EPFL), Institue of Electrical Engineering, CH-1015 Lausanne, Switzerland (email: pierre.vandergheynst@epfl.ch). The authors would like to thank the anonymous reviewers for their many constructive comments on earlier versions of this paper.A MATLAB implementation of the pyramid transform proposed in this paper is available in the Graph Signal Processing Toolbox [gspbox], which is publicly available at https://lts2.epfl.ch/gsp/. MATLAB code for the numerical experiments in Section VI is available at http://www.macalester.edu/~dshuman1/publications.html
Abstract

Multiscale transforms designed to process analog and discrete-time signals and images cannot be directly applied to analyze high-dimensional data residing on the vertices of a weighted graph, as they do not capture the intrinsic topology of the graph data domain. In this paper, we adapt the Laplacian pyramid transform for signals on Euclidean domains so that it can be used to analyze high-dimensional data residing on the vertices of a weighted graph. Our approach is to study existing methods and develop new methods for the four fundamental operations of graph downsampling, graph reduction, and filtering and interpolation of signals on graphs. Equipped with appropriate notions of these operations, we leverage the basic multiscale constructs and intuitions from classical signal processing to generate a transform that yields both a multiresolution of graphs and an associated multiresolution of a graph signal on the underlying sequence of graphs.

{keywords}

Signal processing on graphs, multiresolution, spectral graph theory, graph downsampling, Kron reduction, spectral sparsification, Laplacian pyramid, interpolation

I Introduction

Multiscale transform methods can reveal structural information about signals, such as singularities or irregular structural patterns, at different resolution levels. At the same time, via coarse-to-fine analysis, they provide a way to reduce the complexity and dimensionality of many signal processing tasks, often resulting in fast algorithms. However, multiscale transforms such as wavelets and filter banks designed to process analog and discrete-time signals and images cannot be directly applied to analyze high-dimensional data residing on the vertices of a weighted graph, as they do not capture the intrinsic topology of the underlying graph data domain (see [shuman_SPM] for an overview of the main challenges of this emerging field of signal processing on graphs).

To address this issue, classical wavelets have recently been generalized to the graph setting in a number of different ways. Reference [shuman_SPM] contains a more thorough review of these graph wavelet constructions, which include, e.g., spatially-designed graph wavelets [Crovella2003], diffusion wavelets [diffusion_wavelets], spectral graph wavelets [sgwt], lifting based wavelets [jansen, narang_lifting_graphs] critically sampled two-channel wavelet filter banks [narang_icip], critically-sampled spline wavelet filter banks [ekambaram_globalsip], and multiscale wavelets on balanced trees [gavish]. Multiresolutions of graphs also have a long history in computational science problems including graph clustering, numerical solvers for linear systems of equations (often arising from discretized differential equations), combinatorial optimization problems, and computational geometry (see, e.g., [teng]-[vishnoi] and references therein). We discuss some of the related work from these fields in Sections LABEL:Se:alt_down and LABEL:Se:alternatives.

In this paper, we present a modular framework for adapting Burt and Adelson’s Laplacian pyramid transform [burt_adelson] to the graph setting. Our main contributions are to (1) survey different methods for and desirable properties of the four fundamental graph signal processing operations of graph downsampling, graph reduction, generalized filtering, and interpolation of graph signals (Sections III-LABEL:Se:filtering); (2) present new graph downsampling and reduction methods, including downsampling based on the polarity of the largest Laplacian eigenvector and Kron reduction followed by spectral sparsification; and (3) leverage these fundamental operations to construct a new multiscale pyramid transform that yields both a multiresolution of a graph and a multi-scale analysis of a signal residing on that graph (Section LABEL:Se:pyramid). We also discuss some implementation approximations and open issues in Section LABEL:Se:approximations, as it is important that the computational complexity of the resulting multiscale transform scales well with the number of vertices and edges in the underlying graph.

Ii Spectral Graph Theory Notation

We consider connected, loopless (no edge connecting a vertex to itself), undirected, weighted graphs. We represent such a graph by the triplet , where is a set of vertices, is a set of edges, and is a weight function that assigns a non-negative weight to each edge. An equivalent representation is , where is a weighted adjacency matrix with nonnegative entries

In unweighted graphs, the entries of the adjacency matrix are ones and zeros, with a one corresponding to an edge between two vertices and a zero corresponding to no edge. The degree matrix is a diagonal matrix with an diagonal element , where is the set of vertex ’s neighbors in . Its maximum element is . We denote the combinatorial graph Laplacian by , the normalized graph Laplacian by , and their respective eigenvalue and eigenvector pairs by and . Then and are the matrices whose columns are equal to the eigenvectors of and , respectively. We assume without loss of generality that the eigenvalues are monotonically ordered so that , and we denote the maximum eigenvalues and associated eigenvectors by and . The maximum eigenvalue is said to be simple if .

Iii Graph Downsampling

Two key components of multiscale transforms for discrete-time signals are downsampling and upsampling.111We focus here on downsampling, as we are only interested in upsampling previously downsampled graphs. As long as we track the positions of the removed components of the signal, it is straightforward to upsample by inserting zeros back into those components of the signal. To downsample a discrete-time sample by a factor of two, we remove every other component of the signal. To extend many ideas from classical signal processing to the graph setting, we need to define a notion of downsampling for signals on graphs. Yet, it is not at all obvious what it means to remove every other component of a signal defined on the vertices of a graph. In this section, we outline desired properties of a downsampling operator for graphs, and then go on to suggest one particular downsampling method.

Let be a graph downsampling operator that maps a weighted, undirected graph to a subset of vertices to keep. The complement is the set of vertices that removes from . Ideally, we would like the graph downsampling operator to have the following properties:

  1. It removes approximately half of the vertices of the graph (or, equivalently, approximately half of the components of a signal on the vertices of the graph); i.e., .

  2. The set of removed vertices are not connected with edges of high weight, and the set of kept vertices are not connected with edges of high weight; i.e., if , then is low, and if , then is low.

  3. It has a computationally efficient implementation.

Iii-a Vertex Selection Using the Largest Eigenvector of the Graph Laplacian

The method we suggest to use for graph downsampling is to select the vertices to keep based on the polarity of the components of the largest eigenvector; namely, let

(1)

We refer to this method as the largest eigenvector vertex selection method. A few remarks are in order regarding this choice of downsampling operator. First, the polarity of the largest eigenvector splits the graph into two components. In this paper, we choose to keep the vertices in , and eliminate the vertices in , but we could just as easily do the reverse, or keep the vertices in , for example. Second, for some graphs such as the complete graph, is a repeated eigenvalue, so the polarity of is not uniquely defined. In this case, we arbitrarily choose an eigenvector from the eigenspace. Third, we could just as easily base the vertex selection on the polarity of the normalized graph Laplacian eigenvector, associated with the largest eigenvalue, . In some cases, such as the bipartite graphs discussed next, doing so yields exactly the same selection of vertices as downsampling based on the largest non-normalized graph Laplacian eigenvector; however, this is not true in general.

In the following sections, we motivate the use of the largest eigenvector of the graph Laplacian from two different perspectives - first from a more intuitive view as a generalization of downsampling techniques for special types of graphs, and then from a more theoretical point of view by connecting the vertex selection problem to graph coloring, spectral clustering, and nodal domain theory.

Iii-B Special Case: Bipartite Graphs

There is one situation in which there exists a fairly clear notion of removing every other component of a graph signal – when the underlying graph is bipartite. A graph is bipartite if the set of vertices can be partitioned into two subsets and so that every edge links one vertex in with one vertex in . In this case, it is natural to downsample by keeping all of the vertices in one of the subsets, and eliminating all of the vertices in the other subset. In fact, as stated in the following theorem, the largest eigenvector downsampling method does precisely this in the case of bipartite graphs.

Theorem 1 (Roth, 1989)

For a connected, bipartite graph , the largest eigenvalues, and , of and , respectively, are simple, and . Moreover, the polarity of the components of the eigenvectors and associated with and both split into the bipartition and . That is, for or ,

(2)

If, in addition, is -regular (), then , and 1N,if i∈V1-1N,if i∈V1c

Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
29441
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description