A 68W 31 kS/s FullyCapacitive NoiseShaping SAR ADC with 102 dB SNDR
Abstract
This paper presents a 17 bit analoguetodigital converter that incorporates mismatch and quantisation noiseshaping techniques into an energysaving 10 bit successive approximation quantiser to increase the dynamic range by another 42 dB. We propose a novel fullycapacitive topology which allows for highspeed asynchronous conversion together with a background calibration scheme to reduce the oversampling requirement by 10 compared to priorart. A 0.18m CMOS technology is used to demonstrate preliminary simulation results together with analytic measures that optimise parameter and topology selection. The proposed system is able to achieve a FoM_{S} of 183 dB for a maximum signal bandwidth of 15.6 kHz while dissipating 68 W from a 1.8 V supply. A peak SNDR of 102 dB is demonstrated for this rate with a 0.201 mm^{2}area requirement.
IEEEexample:BSTcontrol
I Introduction
Analoguetodigital converter (ADC) efficiency remains to be the highlight for many current developments in both industry and academia. It used to be the case that oversampling converters ( ADCs) and successiveapproximation register converters (SAR ADCs) found separate application domains where this factor peaks. Stateoftheart ADCs however have mixed these two digitisation techniques to improve performance beyond a 170 dB Schreier FigureofMerit (FoM_{S})[1, 2, 3, 4, 5]. This trend is inpart driven by the growing biometric and biomedical electronics market that necessitates lowpower high dynamicrange signal acquisition as many phenomena of interest exhibit signal dynamics with several orders of magnitude in variation. For example a peripheral neuromodulation device with digitally assisted artifact rejection[6] requires over 100 dB of dynamic range to detect microvolt level sensory neuron activity in the presence of large milivolt level interference from stimulation or motorunit activity which is the application of interest that motivated this work.
The emerging ADC topologies for biosensors use multistage noise shaping or pipelined operation where multiple quantisers are integrated together and the quantisation error of the first quantiser is either resolved by another quantiser after amplification or may be used directly with an alternate feedback mechanism to similarly resolve additional bits. The noiseshaping SAR (NSSAR) [7, 2] however adopts a different approach by sampling and converting the input multiple times while simultaneously employing multiple feedback mechanisms that upmodulate any conversion errors out of the signal bandwidth. In this way the signal can be resolved with much finer precision once the output is decimated and the outofband frequency components are filtered out.
Here we present a novel fullycapacitive NSSAR topology using active higherorder noise shaping that achieves stateoftheart efficiency for high resolution signal acquisition. The proposed configuration is shown in Fig. 1. This figure summarises which signals are processed by each block in a closedloop fashion to resolve the sampled analogue input signal V_{IN}. The main dataconversion mechanism is based on the conventional SAR controller that uses the comparator decisions K to successively set the MSB and LSB bits[8]. However to augment this operation two separate noiseshaping mechanisms are added; one for quantisation noise, H(z^{1}), and another for mismatch noise by means of dataweighted averaging (DWA) together with mismatcherror shaping techniques (MES).
The NSSAR approach is advantageous because the first several bits can be resolved rapidly using SAR and the remaining bits are resolved using modulation over several samples with reduced oversamplingratio (OSR) to yield a significant overall improvement in conversion efficiency. Reusing the sampling mechanism of the SAR allows the quantisation residue left on V_{DAC} to be directly integrated by the loop filter H(z^{1}) that offsets future conversions and shapes the quantisation noise as 1/(1+H(z^{1})). The main drawback here in comparison to highresolution modulators is that, while the conversion is faster, the mismatch in the highresolution DAC must be carefully mitigated. This is where the DWA[9] and MES[10] are introduced to eliminate mismatch errors. DWA manipulates the selection of elements used within the MSB capacitive DAC such that the capacitor mismatch is not only decorrelated from the input but is also shaped with a (1z^{1}) characteristic. The MES module in the LSB section directly offsets the sampled input using past conversion results to realise a FIR feedback structure such as (1z^{1}) or (12z^{1}+z^{2}) highpass characteristics to minimise signalband noise components.
The rest of this paper is organised as follows; Sec. II will relate the main design parameters to conversion precision in relation to primary noise sources. Once these are established the circuit implementation is presented in Sec. III together with simulation results in Sec. IV and Sec. VI will then conclude this work.
Ii NSSAR Design
Comparing with other dataconverters, the NSSAR topology is quite complex with a large number of design parameters that need to be optimised for efficient operation. Below, several of these parameters are discussed in relation to the ADC precision explaining the proposed configuration. Following the singleended configuration shown in Fig. 1, we will estimate the expected sampling noise power (SNP), quantisation noise power (QNP), and mismatch noise power (MNP) for the signal bandwidth of fs/(2 OSR) where fs is the sampling speed. This formulation is purposely presented in brief since it based on established theory from [11] but it does well to illustrate several tradeoff considerations quantitatively when configuring this topology for a particular precision requirement.
(1) 
The expression in Eq. 1 should be a familiar representation for evaluating the inputreferred sampling noise associated with a switchedcapacitor integrator. In particular, this corresponds to the input being sampled with a total capacitive value of C_{T} using kT as the Boltzman temperature factor. The second term simply arises from averaging the input over OSR cycles together with a correction factor of 2.4 due to the integrator topology in H(z^{1})[12]. Fig. 2 shows the estimated resolution for several capacitor values assuming we use an input sinusoid with maximum signal power (SP) given a 1.8 V ADC reference voltage as V_{DD}. Inevitably, achieving high resolution implies a large sampling capacitance or a large oversampling ratio. Typically the former is preferred because increasing the capacitive load also decreases the mismatch power from the capacitive DACs.
(2) 
The expression in Eq. 2 parametrises the overall SAR resolution as N, the loop fillter order as M, and the number of time constants we allow the capacitive DAC to settle as in order to estimate QNP. This construction shows that settling and quantisation errors are shaped by the loop filter reducing the noise power by the term outside the brackets. Both in Fig. 3 and in the formulation we observe a strong dependency with regard to M as long as we provide sufficient settling time during SAR conversion. This result suggests that the noiseshaping feedback must avoid driving the capacitive DAC with active amplifiers during successiveapproximation to avoid slowing down the conversion speed or equivalently increasing the power requirement of each amplifier. We can also confirm here that the order of the loop filter does not need to be very high if the QNP needs to match the SNP.
(3) 
The MNP is evaluated in Eq. 3 with respect to the MES noise shaping order E, the number of bits D used to calibrate each capacitor in the MSB DAC in an idealised way. K represents the MSB DAC resolution in bits. Using a capacitor standard deviation and K=4, the MNP of several configurations is shown in Fig. 4. The observation here is that for small OSR values the mismatch noise is typically dominated by the MSB DAC as the mismatch is not sufficiently shaped. It is relatively expensive to increase the number of elements in the MSB DAC since the scaling is linear and increasing the OSR diminishes the advantage of performing SAR. Instead we propose to calibrate the 15 capacitors in the MSB section as D will reduce the MNP more efficiently. The mismatch from the LSB section contains many more elements and is more effectively shaped using a secondorder MES technique.
The above trends are used to optimise the FOM_{S} in a similar fashion to [3] by correlating hardware requirements with power and accuracy estimators for several configurations. Given an initial 18 bit target precision, we propose the following configuration: CT=50 pF, M=2,=5, K=5, D=4, E=2 with the OSR set to 16 to ease the decimation effort.
Iii Circuit Implementation
The analogue part of the ADC implementation is shown in Fig. 5. Note that the implemented ADC uses an equivalent fullydifferential configuration to gain extra inputdynamic range as well as digital noise suppression. This realisation is entirely based on manipulating the capacitive DAC and enables lowpower operation for varying sampling rates. A second distinguishing feature of the proposed topology is that the comparator only requires one input terminal opposed to two seen in priorart [7, 2] which leads to better linearity and noise performance. In addition the input is bottom plate sampled such that sensitivity to parasitic capacitance and comparator nonlinearity is considerably reduced. This figure also shows three capacitor arrays where the DAC_{M} section corresponds to the DWA modulated MSBs and the DAC_{L1/L2} section represents the MES modulated LSBs being fed back from the SAR controller. Implementing the secondorder MES noiseshaping uses the pingpong configuration from [13].
Three switchedcapacitor amplifiers are used to realise a secondorder cascadedfeedforwardintegrator (CFFI) loop filter topology where the first stage provides autozeroing as well as signal amplification by . This design uses an asynchronous SAR conversion process [14] which is why there are only 3 phases in the switched capacitor circuit; the sampling phase (SMP), the successive approximation phase (SAR), and the quantisation filtering phase (QNF). The SAR only takes 100 ns and the FSM immediately initiates the QNF phase reducing the input clock to twice the sampling rate. The three phases operate as follows:

First A_{1} actively samples its offset on the top plate while bottom plate samples V_{IN} on DAC_{M} together with the MES code on DAC_{L1/L2}. A_{2/3} are simultaneously integrating quantisation errors and sampling the result V_{X2/X3} with respect to V_{DAC} on C_{6} and C_{7}.

V_{DAC} then converges to virtual ground by switching the input to DAC_{M/L1/L2} while quantisation errors from prior conversions are removed by grounding the bottom plate of C_{6/7}. This also disconnects A_{1/2/3} from V_{DAC}.

Finally DAC_{M/L1/L2} is held and the resulting quantisation residue left on V_{DAC} is amplified by A1 on V_{X1}. C_{2/4} samples the voltages V_{X1/X2} which are used to integrate during the following SMP phase.
This configuration scales well for varying loop filter structures as 80% of the power is dissipated by A_{1} and the total sampling noise is dominated by C_{T}. The comparator uses a conventional strongarm topology that is carefully designed to minimise offset since this offset will be seen at the output of A_{3} after amplification which can diminish the outputswing. Conversely the noise and distortion characteristics of the analogue filtering chain is proportionally reduced when the signal is fed back onto the capacitor array during sampling as the attenuation ratio inverts the amplification ratio with good matching.
The MSB DAC calibration mechanism is uses a digital shuffling technique to identify mismatch by switching out different sets of capacitors that will only incur voltage fluctuation on V_{DAC} in the presence of mismatch[15]. These errors are then amplified by A_{1} after the SAR & QNF process and digitally tunes each MSB capacitor using a capacitive subDAC. The sign of each shuffling result is accumulated to adjust the the 15 calibration codes thereby eliminating the mismatch in the MSB DAC. This process can be performed in the background without requirements on the input signal because DWA randomises the capacitor selection mechanism during shuffling.
Spec.  This Work  [16]  [15]  [4]  [5]  [3]  [7]  [2] 

Year  2018  2018  2018  2018  2018  2017  2016  2012 
Tech. [nm]  180  180  180  28  40  180  55  65 
Supply [V]  1.8  1.8  1.8/5  1.1/1.2  2.5/1.1  1.2  1.2  1.2 
Power [W]  68  7.93  12.9m  4.2m  140  5.16  15.7  806 
Topology  NSSAR  SAR  SAR  CT  SAR  SAR  NSSAR  NSSAR 
DAC Res. [b]  10  9  20  4  7  8  12  8 
NSOrder  2  1  0  2  3  2  1  1 
OSR  16  256  1  16  12  24  256  4 
BW [Hz]  15.6k  1k  500k  10M  40k  100k  4k  11M 
SNDR [dB]  102  85  102  94  84  67  96.1  62 
Area [mm^{2}]  0.201  0.68  4  0.1  0.07  0.02  0.07  0.03 
FoM_{S} [dB]  183  166  176  168  169  170  180  164 
Iv Simulation Results
The proposed NSSAR has been designed and validated using a commercially available 180 nm TSMC technology (1P6M HV BCD GEN II). All subcircuits have been integrated with reconfigurable , DWA, MES, and calibration modes to fully characterise postsilicon performance that will confirm the evaluation in Sec. II. This circuit uses an analogue and digital supply at 1.8 V, a 1 A current reference to bias A_{13}, and a 0.9 V commonmode reference for V_{CM}based capacitor switching. Preliminary postlayout simulation results are shown in Fig. 6. This demonstrates the ADC can resolve 17 bits of precision without distortion while using an external clock of 1 MHz where one cycle is used to sample the input and one cycle is used for conversion plus quantisation noise shaping and another cycle is optionally used for background calibration. The last phase can be skipped if the MSB capacitors are already tuned to speedup signal conversion to 31.25 kS/s since temperature and voltage variations over time during normal operation will typically not corrupt the calibrated capacitor characteristics.
The layout for this ADC is shown in Fig. 7. A large majority of silicon area is dedicated towards the MSB capacitive array as the sampling noise must be suppressed. The switched capacitor integrator can be relatively small because the internal loopfilter gain reduces its sampling noise. The digital core takes up a considerable amount of area and power budget primarily as a result of using a 180 nm CMOS technology where more advanced technologies may lead to further improvements if the 1.8 V rating can be maintained. Each MSB capacitor is trimmed using a 8 bit subDAC that tunes about 5% of the 1.7 pF unit capacitance which accommodates well over 3 of the expected capacitor mismatch as well as wafer level variations that may not be captured by the typical mismatch model. The performance measures for the proposed ADC are shown in Table I. Again we highlight the fact that while all these works have highly optimised power budgets, this topology is able to achieve over 100 dB SNDR with a 10 lower oversampling ratio than prior art for this level precision. While this does imply a marginally increased area requirement, the peak efficiency can be achieved over a greater span of sampling frequencies. Note that this particular TSMC process kit does not allow postlayout MonteCarlo so the calibration will be validated using postsilicon results.
V Acknowledgement
This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grants EP/M020975/1 & EP/R024642/1.
Vi Conclusion
This works presents a 17 bit Noise Shaping SAR ADC with reduced oversampling ratio and a purely capacitive implementation which enables in stateoftheart conversion efficiency over a large range of sampling frequencies. In comparison with conventional oversampling ADCs simulation results suggest this NSSAR is able to achieve 102 dB SNDR with substantially lower noiseshaping requirements with comparable or reduced circuit complexity while achieving better power efficiency. We also demonstrated a highlevel parameter selection methodology that is used to optimise the FoM_{S} and identify the factors limiting ADC precision.
References
 [1] Y. Chae, K. Souri, and K. A. A. Makinwa, “A 6.3 W 20 bit incremental zoomADC with 6 ppm INL and 1 V offset,” IEEE J. SolidState Circuits, vol. 48, no. 12, pp. 3019–3027, Dec 2013. [Online]: http://dx.doi.org/10.1109/JSSC.2013.2278737
 [2] Y. Shu, L. Kuo, and T. Lo, “An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR over 1 kHz BW in 55 nm CMOS,” IEEE J. SolidState Circuits, vol. 51, no. 12, pp. 2928–2940, Dec 2016. [Online]: http://dx.doi.org/10.1109/JSSC.2016.2592623
 [3] L. B. Leene and T. G. Constandinou, “A 0.016 mm^{2}12 b SAR with 14 fJ/conv. for ultra low power biosensor arrays,” IEEE Trans. Circuits Syst. I, vol. 64, no. 10, pp. 2655–2665, Oct 2017. [Online]: http://dx.doi.org/10.1109/TCSI.2017.2703580
 [4] I. Jang et al., “A 4.2 mW 10 MHz BW 74.4 dB SNDR continuoustime deltasigma modulator with SARassisted digitaldomain noise coupling,” IEEE J. SolidState Circuits, vol. 53, no. 4, pp. 1139–1148, April 2018. [Online]: http://dx.doi.org/10.1109/JSSC.2017.2778284
 [5] A. AlMarashli, J. Anders, J. Becker, and M. Ortmanns, “A nyquist rate SAR ADC employing incremental sigma delta DAC achieving peak SFDR=107 dB at 80 kS/s,” IEEE J. SolidState Circuits, vol. 53, no. 5, pp. 1493–1507, May 2018. [Online]: http://dx.doi.org/10.1109/JSSC.2017.2776299
 [6] A. E. Mendrela et al., “A bidirectional neural interface circuit with active stimulation artifact cancellation and crosschannel commonmode noise suppression,” IEEE J. SolidState Circuits, vol. 51, no. 4, pp. 955–965, April 2016. [Online]: http://dx.doi.org/10.1109/JSSC.2015.2506651
 [7] J. A. Fredenburg and M. P. Flynn, “A 90 MS/s 11 MHz bandwidth 62 dB SNDR noiseshaping SAR ADC,” IEEE J. SolidState Circuits, vol. 47, no. 12, pp. 2898–2904, Dec 2012. [Online]: http://dx.doi.org/10.1109/JSSC.2012.2217874
 [8] B. P. Ginsburg and A. P. Chandrakasan, “500 MS/s 5 bit ADC in 65 nm CMOS with split capacitor array DAC,” IEEE J. SolidState Circuits, vol. 42, no. 4, pp. 739–747, April 2007. [Online]: http://dx.doi.org/10.1109/JSSC.2007.892169
 [9] B. H. Leung and S. Sutarja, “Multibit sigma  delta A/D converter incorporating a novel class of dynamic element matching techniques,” IEEE Trans. Circuits Syst. II, vol. 39, no. 1, pp. 35–51, Jan 1992. [Online]: http://dx.doi.org/10.1109/82.204108
 [10] M. Aboudina and B. Razavi, “A new DAC mismatch shaping technique for sigmaâdelta modulators,” IEEE Trans. Circuits Syst. II, vol. 57, no. 12, pp. 966–970, Dec 2010. [Online]: http://dx.doi.org/10.1109/TCSII.2010.2083172
 [11] S. Pavan, R. Schreier, and G. C. Temes, Understanding DeltaSigma Data Converters. IEEE, 2017. [Online]: http://dx.doi.org/10.1002/9781119258308
 [12] R. Schreier, J. Silva, J. Steensgaard, and G. C. Temes, “Designoriented estimation of thermal noise in switchedcapacitor circuits,” IEEE Trans. Circuits Syst. I, vol. 52, no. 11, pp. 2358–2368, Nov 2005. [Online]: http://dx.doi.org/10.1109/TCSI.2005.853909
 [13] J. Liu, G. Wen, and N. Sun, “Secondorder DAC MES for SAR ADCs,” IET Elec. Letters, vol. 53, no. 24, pp. 1570–1572, 2017. [Online]: http://dx.doi.org/10.1049/el.2017.3138
 [14] R. Sekimoto et al., “A 0.5 V 5.2 fJ/conversionstep full asynchronous SAR ADC with leakage power reduction down to 650 pW by boosted selfpower gating in 40 nm CMOS,” IEEE J. SolidState Circuits, vol. 48, no. 11, pp. 2628–2636, Nov 2013. [Online]: http://dx.doi.org/10.1109/JSSC.2013.2274851
 [15] H. Li et al., “A signalindependent backgroundcalibrating 20 b 1 MS/S SAR ADC with 0.3ppm INL,” in IEEE Proc. ISSCC, Feb 2018, pp. 242–244. [Online]: http://dx.doi.org/10.1109/ISSCC.2018.8310274
 [16] S. Choi et al., “An 84.6 dBSNDR and 98.2 dBSFDR residueintegrated SAR ADC for lowpower sensor applications,” IEEE J. SolidState Circuits, vol. 53, no. 2, pp. 404–417, Feb 2018. [Online]: http://dx.doi.org/10.1109/JSSC.2017.2774287